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Identifying Market Structure: A Deep Network Representation Learning of 

Social Engagement  
 

Abstract 

With rapid technological developments, product-market boundaries have become more dynamic. 

Consequently, competition for products and services is emerging outside the product-market boundaries 

traditionally based on SIC and NAICS classification codes. Identifying these fluid product-market 

boundaries is critical for firms not only to compete effectively within a market, but also to identify lurking 

threats and latent opportunities. Extant methods using surveys on consumer perceptions or purchase data 

will be unable to identify the impact that a brand from outside the boundary may have on brands within a 

product-market.  Newly available big data on social media engagement presents such an opportunity. We 

propose a deep network representation learning framework to capture latent relationships among 

thousands of brands and across many categories, using millions of social media users’ brand engagement 

data. We build a heterogeneous brand-user network and then compress the network into a lower 

dimensional space using a deep Autoencoder technique. We validate our technique using a novel link-

prediction method and visualize the learned representations pictorially.  We illustrate how our method can 

capture the dynamic changes of product market boundaries using two well-known events: the acquisition 

of Whole Foods by Amazon and the introduction of the Model 3 by Tesla. 

Keywords: AI, Deep Representation Learning, Social Media, Competitive Market Structure, Big Data   
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Introduction 

Firms compete in a market to satisfy the specific needs of consumers in the market. The market and the 

competing products comprise a “product-market” with the boundary defining the brands competing 

within that market. Identifying the product-market boundary and examining the strength of competition 

between brands within the product-market has long been important issues with strategic implications for 

next-generation product design, product positioning, new customer acquisition, and pricing and 

promotion decisions.  While in many categories the product-market is stable over time, with managers 

(and regulators) usually focusing on brands within the boundaries from a competitive perspective, this is 

increasingly not the case. With the rapidly changing competitive environment ushered in by technological 

developments, the product-market boundaries themselves are changing and competitive threats and 

opportunities may emerge outside of the narrowly defined product-market boundaries. For example, the 

digital camera product-market has been upended by developments in smartphone categories.  Similarly, 

Tesla who initially entered the product-market of high-end automobiles with a different fuel technology, 

has rolled out products for the lower-end market changing the competition in that product-market.  

Amazon, hitherto an online platform, has entered offline markets with the purchase of Whole Foods. In 

many such situations, product-market boundaries based on traditional SIC and NAICS industry 

classification codes may be unable to spot new threats and opportunities. Managers now need to have 

valuable insights on the fluid product-market boundaries which could help them spot potential 

competitors and complements, identify cross-promotion strategies, and develop firm-level strategies. This 

is precisely what our paper seeks to provide using large-scale (over a hundred million) social media user 

engagement data (“likes” and “comments”) spanning several thousands of brands in different 

product/service categories.   

 Over the years, academics and practitioners have contributed significantly to developing various 

methods to define and identify market structure (see review by Shugan 2016). These include survey-based 

methods such as  brand concept maps (BCM) (John et al. 2006) and ZMET (Zaltman and Coulter 1995), 
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methodologies based on observational purchase data (e.g., brand switching) (Kannan and Sanchez 1994), 

consideration sets (Ringel and Skiera 2016), and scanner-based purchase data (Erdem 1996; Novak 1993; 

Shugan 1987).  Within the online context, researchers have used unstructured user click streams (Moe 

2006), online search logs (Kim et al. 2011, Ringel and Skiera 2016), and customer reviews (Lee and 

Bradlow 2011).  Some of these methods use data from the bottom of the purchase funnel, such as 

evaluation and purchase stage data, and thus assume the product-market boundaries are pre-specified.  

Even if some of these methods use data from the top of the funnel at the awareness or pre-evaluation 

stage, such as forum discussions (Netzer et al. 2012) and hashtags (Nam et al. 2017), these papers define a 

product-market boundary first and then examine the competition within the pre-specified product-market 

to make these methods implementable. Thus, many of the methods will not be able to capture the changes 

that occur to the product-market boundaries and/or the impact that a brand from outside the boundary may 

have on brands within a product-market. 

Our methodology based on deep representation of user-brand relationships at the top of the purchase 

funnel overcomes the above limitation by creating a more inclusive representation of brands as well as 

users using heterogeneous networks. Many extant studied  in market structure (e.g., Urban, Johnson and 

Hauser 1984; Grover and Srinivasan 1987, Kannan and Sanchez 1994; Erdem 1996;) as well as those 

studies using big data technologies (e.g., Lee and Bradlow 2011, Netzer et al 2012, Ringel and Skiera 

2016, Culotta and Cutler 2016, Gabel, Guhl and Klapper 2019) view the competing/complementary 

brands as homogeneous networks. That is, they specify the relationship between any two brands in the 

product-market using metrics such as similarities or distances derived from brand switching, co-

occurrences, word embeddings, etc. without directly modeling the entities (customers, individual 

consideration sets or individual reviews) that give rise to such similarities or distances. Our methodology 

based on heterogeneous networks considers both brands and users as primitives and uses as input the 

relationship in terms each user of liking and commenting on brands.  This difference in homogeneous and 

heterogeneous networks imply that extant research considers aggregate data of relationships between 
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brands as input, while in our methodology we consider the disaggregate individual level relationships 

between users and brands as input.  

The difference between a homogeneous network and a heterogeneous network also becomes more 

salient when a product-market boundary is not pre-specified. Consider, for example, a user who likes the 

brands United Airlines, Southwest and Hyatt Hotels. A homogeneous network would translate this data 

into three separate brand links between (1) United and Southwest, (2) Southwest and Hyatt, and (3) 

United and Hyatt.  Our methodology based on heterogeneous networks allows implicit relationships 

between (1) users and brands, (2) brands and brands and (3) users and users to be leveraged in creating 

the multidimensional space and locate the three brands closer to this user. The additional disaggregate 

relationship information produces more accurate representations of the brands in the multidimensional 

space as compared to a homogeneous network. This additional information is discarded when the 

product-market boundary is pre-specified.  Consider, for example, User 1 who likes United and Hyatt 

while User 2 likes Southwest and Hyatt. When the product-market is pre-specified as “airlines brands,” 

information about the users liking the Hyatt brand is discarded. As a result, a piece of information that can 

provide insights into relationship between United and Southwest through their relationships with Hyatt is 

not considered. However, when we do not pre-specify the product-market boundaries as in our 

methodology we are able to leverage all such information in creating a very accurate representation of the 

brands.  

The essence of our deep network representation learning based methodology is to represent brands 

and users in the same multidimensional “embedding” space. In other words, the more cross-industries 

engagement information we have from the users, the better we learn the user embeddings and, in turn, the 

better we learn the brand embeddings. Limiting product-market boundary to “airlines” would limit all 

engagement activities to within airline brands, and users engaging with brands from other industries are 

discarded. Our methodology avoids this problem and with the scaling power of our methodology we are 
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able to examine the relationships across 5000-plus brands based on the heterogeneous network of brands 

and users, which allows us to identify opportunities and threats for brands coming from outside of their 

traditional product-market boundaries.  Even if a methodology based on homogeneous network is highly 

scalable as ours (e.g., Gabel, Guhl, and Klapper 2019) and thus allows boundaries to be not pre-specified, 

our methodology with heterogenous networks perform better as we show in our validation exercises. 

 Unlike the extant methods for identifying market structure that use data from consumers’ lower 

funnel activities (purchase data, brand switching, price comparison data, consideration data) that pre-

specify boundaries, we use upper funnel user-brand engagement data (such as liking and commenting on 

brand posts) from social media that spans product-markets. Our methodology used this user-brand 

engagement data to identify latent relations among a large number of brands. Previous research has 

documented that a user interacting with a brand online shows a brand affinity (Kuksov et al. 2013, Naylor 

et al. 2012), and can lead to (offline) purchase (Pereira et al. 2014), or express a desire to hurt the brand in 

favor of its rival brand (Ilhan et al. 2018). Therefore, we make the minimal assumption that if a user 

interacts with two brands, for example, Samsung and an HTC phone, it indicates the user has some level 

of interest -- greater than awareness -- in both brands. Simply by sharing interested users, the two brands 

are related to one another on a spectrum ranging from substitutes to independent to complements. If such 

patterns exist after observing activities on various brands from a large group of users (which could be 

millions of users on a social media platform), we argue that such a pair of brands have latent relations on 

some dimension, as learned from the user-brand data.  

Based on the above premise, we first construct a large-scale heterogeneous user-brand network based 

on user engagement on brands’ social media public fan pages. Then, we propose a deep network 

representation learning method to discover relationships within the data. Specifically, we use a deep 

learning method suitable for (1) handling large data efficiently and (2) learning complex patterns from 

data effectively (cf. Agrawal et al. 2018; LeCun et al. 2015; Timoshenko and Hauser 2019). The process 
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leads to a low-dimensional representation (i.e., a vector) for each brand and each user by training a deep 

Autoencoder on the network data. The deep Autoencoder is similar to traditional dimensionality reduction 

methods such as Principal Component Analysis in capturing latent factors in data with few dimensions. It 

is however very different from those methods in that it uses a non-linear transformation function to 

understand the latent patterns in data and at the same time reduce the noise in the data. In our context, the 

deep Autoencoder can preserve the first-order (user-brand direct connection) and the second-order (two 

users connecting to the same brand, or one user connecting to two different brands) network topology so 

that brands with network structural equivalence are located closer in the representation space, while 

brands with dissimilar network structures are located further away. This method also projects users and 

brands onto the same dimensional space, which can be used for many different follow-up analyses. For 

example, in this study we apply state-of-the-art visualization tools such as t-SNE (Maaten and Hinton 

2008) to the learned brand vectors to visualize the product-markets characterizing the brands. Moreover, 

the proposed framework can capture changes in product-market boundaries by constructing a sequence of 

networks across different time frames to understand the dynamics of market structure.  

We validate the product-markets identified through our methodology using a link prediction method, 

where using a calibration sample we learn the network representation and use it to predict the network 

structure in a validation sample.  The results show that our proposed approach significantly outperforms 

several baselines on two standard metrics of predicting user-brand engagement on out-of-sample data. We 

also establish the face validity of the results through the identification of product-market boundaries. Our 

analysis of the user-brand engagement data of over five thousand brands and nearly 26 million users 

reveals product-market boundaries with high face validity – grouping of specific categories, high-end 

brands, and overlaps.  Our event studies on Amazon’s acquisition of Whole Foods and Tesla introducing 

the Model 3 illustrate how our methodology captures the changes in product-markets associated with 

these events. We also discuss how the market structure maps can reveal opportunities and threats facing a 

brand.  



8 
 
 

In summary, contributions of our paper include leveraging the information embedded in big data of 

user-brand engagement networks to identify product-markets without having to pre-specify boundaries. 

Using user-brand engagement heterogeneous network data at a much higher level in the purchase funnel 

(interest phase) and deep learning techniques provide us with insights at this scale and level of detail 

much better then extant methods.  Our paper is among the first to apply deep network representation 

learning implemented using deep Autoencoder to social media data and show its usefulness for market 

structure discovery. Our ability to pin a large number of brands on the market structure map to precisely 

visualize brand relationships using the learned vector representations allows managers to identify 

opportunities and threats that lie beyond product-market boundaries. We provide illustrations of such 

insights and show product-market boundaries change as a function of events, which could be of use not 

only to managers within the product-markets but also to regulators trying to understand competition in 

markets. Finally, our study is apt illustration of how Artificial Intelligence (AI) can be used to better 

tackle a traditional marketing problem and provide insights. It is well known that three elements render 

AI techniques possible for-life applications: data, algorithm, and computing power (Agrawal et al. 2018). 

In this paper, we leverage deep learning and a network representation learning (algorithm) to understand 

market structure using a large-scale social media data (data). The model implementation is efficient under 

Nvidia P100 GPU, with Tensorflow as the backend framework (computing power).  

Background and Theoretical Foundation 

Extant work in identifying competitive market structures dates to the 1970s (e.g., Kalwani and Morrison 

1977; Day, Shocker and Srivastava 1979) when diary-panel based brand-switching purchase data and 

survey-based consumer judgments of substitution-in-use or similarities were used to construct market 

structure maps.  Developments since then have been based on the availability of the volume and variety of 

data and methodology in terms of their sophistication and capability to handle large volumes of data. We 

briefly review them from the two perspectives of data and methodology.  
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Data 

Early studies depended on customer data generated either at a late stage of the customer journey or the 

very beginning of the journey. For example, purchase data collected using diary-panels or survey of brand 

perceptions – judgements of similarities or substitution-in-use – were commonly used for constructing 

brand-switching data or perceptual maps of brand relationships. The increased availability of scanner-

panel data of purchases, market structure models with marketing mix (e.g., Carpenter and Lehmann 1985; 

Kannan and Wright 1991), and dynamic market structure models (e.g., Erdem 1996) provided more 

detailed insights into inter-brand relationships and competition.  Focusing on the early stages of the 

customer journey, approaches such brand concept maps (BCM) (John et al. 2006) and ZMET (Zaltman 

and Coulter 1995) relied on data collected using surveys and, therefore, were effort intensive. Given the 

scaling issues with the MLE-based models and the limitations with survey data, the market definition 

problem was ignored, and product-market boundaries were pre-specified generally at the industry level so 

that a smaller number of brands within an industry could be analyzed.  

The advent of online sources, such as review platforms, social media platforms, and clickstream data, 

has dramatically increased the volume and variety of data for market structure studies, especially at the 

awareness, search, and consideration stages of the customer journey. For example, the study by Kim et al. 

(2011) relies on Amazon’s customer search logs on camcorders to derive market structure. Lee and 

Bradlow (2011) visualize competitive market structure in the digital camera industry using user-generated 

online customer reviews that mainly comment on product attributes and brands’ relative positions. The 

study by Netzer et al. (2012) relies on data from online discussion forums to build a market structure of 

the automobile industry using a hybrid text mining and network analysis method.  Similarly, Ringel and 

Skiera (2016) use search history from a product and price comparison site to derive customers’ 

consideration sets that reflect competition among LED-TVs at the SKU level.  It is important to note that 
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even with a large volume of data, these studies pre-define the product-market boundaries at the industry 

level to make the analyses viable. 

There are other studies where the product-market boundaries are not pre-defined. For example, 

France and Ghose (2016) introduce a method for identifying, analyzing, and visualizing sub-markets in 

product categories from online reviews. Nam, Joshi, and Kannan (2017) use hashtags from a social 

tagging website to infer brand relations across categories. Similarly, Culotta and Cutler (2016) propose to 

extract brand-related attributes and build brand conception maps using hashtags from Twitter, where such 

pre-defined boundaries are not necessary. More recently, Gabel, Guhl and Klapper (2019) analyze 

customers’ market baskets of items purchased on shopping trips using word embeddings. (However, from 

a methodology perspective all these studies use homogeneous networks – a distinct disadvantage as we 

have discussed earlier). Our proposed methodology focuses on the early stages of the customer journey 

and allows the product-market boundaries to emerge from the data. More importantly, the scale at which 

we analyze that data, which is much larger than any of the extant methods (except for Gabel, Guhl and 

Klapper 2019), is key to analyzing the relationships spanning multiple categories. Our proposed method 

is capable of handling thousands of brands and millions of users. Table 1 summarizes the studies based on 

the type of data used. 

<Insert Table 1 Here> 

Methodologies 

Much of the online data generated in the early stages of the customer journey tend to be unstructured 

(online reviews, social-tags, hashtags, etc.). In order to extract product names or attributes included in 

data, researchers develop and apply various text mining-based technologies to reviews, discussions, and 

summaries in online forums. For example, Netzer et al. (2012) propose a model combining conditional 

random fields (CRF) and predefined linguistic rules to extract product keywords. Pant and Sheng (2015) 

focus on firm-generated content in websites, compute firm similarity based on textual descriptions (from 
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the first few pages of firm websites), and use TF-IDF (term frequency-inverse document frequency) and 

website structures link analysis (in-links and out-links) to derive firm competing relationship. Ringel and 

Skiera (2016) construct consideration sets from consumer co-search data, while Gabel, Guhl and Klapper 

(2019) use word embeddings. Our method is significantly different from these methodologies as the 

above methodologies are based on homogeneous networks while we use heterogeneous networks. Table 2 

summarizes selected extent studies on market structure analysis in multiple dimensions and highlights the 

positives of our proposed methodology. 

<Insert Table 2 Here> 

Social Media Engagement 

Our proposed methodology analyzes social media engagement data in the form of user-brand links. Many 

social media platforms such as Facebook, Twitter, and Instagram host public fan pages created by firms to 

facilitate the communication with customers and promote products. The user-brand engagement could be 

in the form of a user “liking” a post by the brand, “sharing” a brand post, or “commenting” on a brand 

post.  Since each of these “likes,” “shares,” and “comments/posts” is a user-brand link in our study, it is 

important to understand what they represent. Surveys of fans of brands have revealed many reasons as to 

why users “like” a brand or post/share comments. These include positive attitude such as: to support a 

brand they like, to get a coupon or discount, to get regular updates from the brands they like, to participate 

in contests, to share personal experiences, to share their interests/lifestyles with others, to research brands, 

to imitate a friend who likes the brand, to act on a recommendation from another fan, etc. (Kuksov et al. 

2013, Naylor et al. 2012, Pelletier and Horky 2015, Pereira et al. 2014).  In contrast to the positive 

sentiments, users may also leave negative comments to hurt brand in favor of its rival brand (Ilhan et al. 

2018).  In our proposed approach, we make a minimal assumption by creating a user-brand link regardless 

of the type of engagement. This minimal assumption is based upon a rationale that users interacting with a 

brand online exhibit their interest towards the brand to some extent. Thus, the two brands are related to 
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one another on a spectrum ranging from substitutes to independent to complements. Prior research has 

examined such contexts and studied the impact of user engagement on brand image and customer 

purchase intentions with mixed results (De Vries, Gensler, and Leeflang 2012; Lipsman et al. 2012; 

Naylor, Lamberton, and West 2012; Goh, Heng, and Lin 2013; Hoffman, Novak, and Kang 2017). For 

example, Goh, Heng, and Lin (2013) find that user engagement in social media brand communities leads 

to a positive increase in purchase expenditures. Mochon et al. (2017) use a field experiment to find that 

users who liked a gym brand online were likely to become members of that gym offline. It is not the 

organic liking by the user that lead to the offline purchase; more often “liking” a Facebook page is used as 

a platform for firm-initiated promotional communications.  In another field experiment setting, John et al. 

(2017) find that “liking” is simply a symptom of a positive brand attitude and does not imply the fan is 

any more loyal to the brand or any more likely to purchase the brand. Additionally, it is only when users 

who liked the brand are targeted using promotional communication by the firm that purchase probabilities 

increase. Thus, for our research purposes we will treat a “like,” “share,” or a “comment/post” as 

exhibiting an interest towards the brand at the beginning of the customer journey. Such a tendency for 

users to connect to brands is generally interpreted as interest, and reflects possibly broader (e.g., offline) 

interactions (Culotta and Cutler 2016, Kuksov et al. 2013, Naylor et al. 2012, Netzer et al. 2012), which is 

consistent with our treatment. Our proposed approach is also consistent with research in social network 

analysis suggesting that social network structure equivalence reflects value/interest homophily and can be 

used to measure social proximity (McPherson, Smith-Lovin, and Cook 2001).  

Methodology 

The social network platforms, such as Facebook, Instagram, and Twitter, can be abstracted as a network 

containing business (firm) accounts and individual user accounts. The public fan pages of business 

accounts are used by firms to communicate with their customers and fans. Users interact with brands and 

with each other in different ways, such as commenting, liking, sharing, and following. To discover latent 
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relationships among brands, we propose a deep network representation learning framework which has the 

following steps as summarized as in Figure 1. 

<Insert Figure 1 Here> 

Step 1: Data Collection. We specify a set of brands that is of interest in the social network platform. 

We then download all available user engagement data from the brands’ public fan pages during the 

appropriate time window depending on managerial interest. A user engagement is defined as either liking 

or commenting on a firm’s post on its public fan page. Note that for the sake of privacy, we do not 

attempt to collect any personal information of users. Rather, the only thing we obtain is the unique user 

identifier, assigned by Facebook, and their public engagement activities, which is consistent with recent 

study on social media marketing (Ilhan et al. 2018, Kübler et al. 2019)1. Moreover, different platforms 

may have their own specific data policy. For example, collecting individuals who liked a given page is 

not permitted by Facebook. Such data restrictions and potential ethical concerns do come at a research 

cost as we would not be able to verify how representative they are of the population at large. Therefore, 

developing a sophisticated model becomes necessary to analyze publicly available data.  

Step 2: Network Construction. We start with a cleansing operation to remove spurious users. We 

then construct a heterogeneous user-brand network including all selected brands and all users engaging 

with them. A brand node and a user node are connected if the user engages with the brand. The strength 

of an edge between a brand node and a user node is the engagement frequency.  

Step 3: Deep Network Representation Learning.  The deep network representation learning 

algorithm represents each node (brand or user) as a low-dimensional vector, also known as a node 

embedding. Embedding techniques are not new in marketing. For example, Timoshenko and Hauser 

(2019) adopt pre-trained word embeddings, where each word is represented as a low-dimensional vector, 

 
1 In fact, obtaining detailed user personal information for marketing analysis (e.g., political targeting) is 

controversial and subject to ethical concerns, such as the Facebook–Cambridge Analytica data scandal. 
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to extract insights from textual reviews. However, our node embeddings are trained via an unsupervised 

deep Autoencoder. This representation learning is essential to data-driven analysis, and the learned low-

dimensional embeddings are useful for the downstream task of identifying and visualizing the product-

markets.  

The objective in using an Autoencoder is to learn the representation of the data so that each node can 

be represented in a lower dimensional space while the network structure between users and brands is 

preserved. It trains the network to ignore the “noise” in the data and focus on the primary latent structure. 

The Autoencoder reduces the dimensionality of the input data to a “bottleneck” (the reduced encoding), 

and using the reduced encoding as input, reconstructs a representation of the original data. Learning 

occurs through backpropagation of the loss (see detailed definition in Appendix) to get the reconstructed 

representation as close as possible to the original representation while eliminating noise. It is the 

bottleneck reduced encoding we are interested in for developing market structure. In essence, we can 

compare the dimensionality reduction functionality of the Autoencoder with that of Principal Component 

Analysis (PCA). While in PCA the reduced dimensions are linear combinations of the input variables, the 

reduced dimensions in Autoencoder are non-linear and non-orthogonal achieved through non-linear 

activations of the neurons allowing the model to learn more powerful generalizations than what PCA can.   

 In our application, the Autoencoder works on the large heterogeneous network in an attempt to 

preserve the network structure such that (i) nodes directly connected have similar vectors (closer to each 

other) in the reduced embedding space, and (ii) nodes that are not directly connected but share structural 

equivalence (such as many common neighbors) are also similar in the embedding space. These two types 

of similarity are referred to as the first-order (direct connection) similarity and the second-order (network 

structural equivalence) similarity. Formally, we denote an aforementioned network as 𝐺 = (𝑉𝑏 , 𝑉𝑢 , 𝐸), 

where 𝑉𝑏 = (𝑣1
𝑏 , 𝑣2

𝑏 , … , 𝑣𝑛
𝑏) represents a set of 𝑛 brand nodes, 𝑉𝑢 = (𝑣1

𝑢, 𝑣2
𝑢, … , 𝑣𝑚

𝑢 ) represents 𝑚 user 

nodes, and 𝐸 = {𝑒𝑖,𝑗 }, 𝑖 ≤ 𝑚, 𝑗 ≤ 𝑛 represents all links between users and brands. 𝑒𝑖,𝑗 indicates an 
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engagement between user 𝑖 and brand 𝑗. Given such a network 𝐺, the network representation aims to learn 

a mapping function 𝑓: 𝑣𝑖
𝑏 , 𝑣𝑗

𝑢 ⟼ 𝑤𝑖
𝑏 , 𝑤𝑗

𝑢 ∈ 𝑅𝑑, where 𝑑 ≪ min (𝑚, 𝑛). 𝑤𝑖
𝑏 , 𝑤𝑗

𝑢 are called brand 

embedding and user embedding, respectively. A commonly used embedding dimensionality 𝑑 is 300 

(Mikolov, Chen, et al. 2013, Mikolov, Sutskever, et al. 2013). The objective of the mapping function is to 

develop appropriate embeddings so that the brand proximities, brand-user proximities, and user 

proximities exhibited in the original network are preserved as much as possible in the reduced embedding 

space. Technical details of the Autoencoder methodology, and parameter tuning are discussed in 

Appendix A1. 

Prior research of network analysis relies on network adjacent matrix representation, that is, a brand 

node is represented as a |𝑉𝑢|-dimension vector where |𝑉𝑢| is the number of unique user nodes in the 

network. Each element in the vector corresponds to a user. If the user at a particular index has a 

connection with the brand in the network, that element is marked as 1 and 0 otherwise. The brand vector 

is usually extremely sparse given the fact that each brand only engages with a small subset of users. 

Similarly, the user vector is also very sparse since each user only engages with a small subset of brands. 

Using this representation to measure similarity is inaccurate – not mention inefficient – for such an order 

of magnitude. In contrast, representing brands as dense low-dimensional vectors allows us to capture 

brand relations from multiple facets, and we use a toy example (shown in Figure 2) to illustrate how 

network representation learning works. 

<Insert Figure 2 Here> 

Suppose we have three brands (B1, B2, B3) and five users (U1, U2, U3, U4, U5) in a network. 

Representation learning aims to find a mapping function so that each node is represented as a low-

dimensional vector (for the sake of this illustration let us assume that it is 3-dimensional). The mapping 

function is optimal when nodes exhibiting similar structures (first-order and/(or) second order) are 

projected onto similar vectors in the reduced embedding space (assumed to be 3-dimensional space in this 
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illustration). Since U1 engaged with B1, we expect the vector representation of B1 and U1 to be close. 

Similarly, B2’s representation is closer to B1’s representation than to B3’s as B2 shares more users with 

B1 than with B3. Since B2 has some additional network structure, such as connections with U4 and U5, 

its representation leans towards U4 and U5. All representations are jointly learned in a similar way.  

Step 4: Market Structure Discovery. Once we obtain vector representation for brands and users, 

we can use learned embeddings to efficiently compute similarity among brands and to visualize natural 

clusters of related brands. Finding similar brands to a focal brand can be achieved by a nearest neighbor 

search based on the widely used cosine similarity. Cosine similarity measures the cosine of the angle 

between two vectors and has a range [-1, 1]2. Visualizing natural clusters of related brands can be 

achieved by a dimension reduction method, such as t-SNE (Maaten and Hinton 2008), which projects 

high-dimensional data into a low-dimensional space (e.g., two or three dimensions). It has been used for 

visualization in a wide range of applications and is especially well-suited for visualizing high-dimensional 

representations learned from deep neural networks. t-SNE preserves the distance of data points well such 

that data points nearby in a high-dimensional space would be close in a lower dimensional space, while 

distant data points would be further apart in a lower dimensional space. Specifically, the input of t-SNE is 

the learned vectors from our network representation learning in the reduced dimension space with d=300 

and the output is the vectors with 2 dimensions. Thus, we shall observe that related brands are 

surrounding each other in the reduced 2-dimensional space after t-SNE. Note that other high-dimensional 

visualization method such as UMAP (McInnes et al. 2018) can also be applied to visualize the derived 

market structure. Both t-SNE and UMAP are designed to provide a very informative visualization of 

heterogeneity in data. They have comparable quality of preserving global and local structure. 

 
2 Note that we do not use Jaccard similarity because the brand vector space is a continuous space and 

Jaccard similarity is specifically designed for a discrete space, nor Euclidian distance due to its poor 

performance in a high dimensional space. 
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Data 

In this study, we use Facebook as our empirical benchmark, as it is one of the largest and most 

representative online social network platforms. Note that our model can be generalized to other similar 

social network platforms. 

To collect Facebook data, we first obtain a list of U.S. brands with the most followers from the social 

media marketing website Socialbakers3. Facebook public fan pages are categorized into several groups on 

Socialbakers, such as Brands, Celebrities, Community, Entertainment, Media, Place, Society, and Sport. 

Without loss of generality, we focus on the “Brands” as it covers a wide range of different industries and 

is more interesting to marketers. On Facebook, every brand is associated with a category that is chosen 

from the predefined Facebook system when creating the public page. This category label is solely 

determined by the brand and is aligned with its core business. For example, Walmart is under the category 

of “retail,” and Amazon.com is under the “ecommerce” category. In total, we obtain 5,478 different 

brands, covering 25 different categories. The largest brand, in terms of number of followers, is Walmart, 

with 30 million followers. The smallest brand, is Bladz Jewelry in the “fashion” category, with 100 

thousand followers. Figure 3 shows the histogram of number of followers of brand Facebook page. We 

observe that the dataset contains a variety of brands with varying popularity, which makes us believe that 

this dataset is representative of brands on Facebook. 

<Insert Figure 3 Here> 

On Facebook, firms post on their public fan pages and allow users to comment, like, and share. The 

posts become an important marketing channel for businesses to interact with their customers. We use 

Facebook Graph API4 to download all activities visible on a brand page such as posts by the brand 

 
3 Socialbakers is a global AI-powered social media marketing company offering a marketing software-as-

a-service platform called the Socialbakers Suite. It includes data from Facebook, Twitter, and YouTube. 

https://www.socialbakers.com/. 

4 https://developers.facebook.com/docs/graph-api/ 

https://www.socialbakers.com/
https://developers.facebook.com/docs/graph-api/
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administrator, as well as posts by users, including comments and likes on brand posts. Facebook added 

more reaction emotions such as ‘love,’ ‘haha,’ ‘wow,’ ‘sad,’ and ‘angry’ in 2016. Our dataset does not 

include these reaction emotions because the Graph API returns only the ‘likes.’ Moreover, users can 

‘share’ brands’ posts, but the Graph API does not provide individual level data regarding who shares 

which post, rather it provides an overall share count for each post. Therefore, our dataset does not include 

‘share’ engagement. It is worth emphasizing that to ensure privacy protection, we do not download any 

user profile information nor examine the content of user comments. All engagement activities are 

represented by unique user identifiers, regardless of whether the user has a public or private Facebook 

profile, and brand identifiers. The dataset collected for this study covers the duration from January 1, 

2017, through January 1, 2018. In total, we obtain 106,580,172 user-brand engagement activities from 

25,992,832 unique users. Since prior research has shown that online interaction is a reflection of broader 

and even offline interaction (Pauwels and Van Ewijk 2013), given the scale of user online engagement in 

this study, we believe it is a good proxy of how the overall consumer population perceives these analyzed 

brands.  

Data cleaning. To ensure data quality and robust results, we design a set of rules to remove fake 

users and their corresponding activities. As fake accounts and fraudulent activities have become more 

pervasive, researchers and social media firms are increasingly paying more attention to these problems 

(Mukherjee et al. 2012, Van Vlasselaer et al. 2016, Zahedi et al. 2015). For comments on Facebook brand 

pages to reflect genuine user experiences, opinions, and interactions with brands, such fraudulent 

activities should be detected and removed. Following prior work on Facebook (Zhang et al. 2016), we 

replicate a set of similar rules to remove fake users and their posts. For example, we do find one user who 

liked posts across 475 different brands. As most users are likely to be interested in few brands, we remove 

users who like posts on more than 200 brands, which accounts for 0.01% of the total users, and 1.6% of 

the total user-brand engagement. We also remove users who posted duplicate comments containing URL 

links. Table 3 describes the resulting data using a heterogeneous user-brand network. The brands’ degree 
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distribution (number of connections) exhibits a scale-free distribution (shown in Figure 4), a well-

documented phenomenon in most social networks.  

<Insert Table 3 Here> 

<Insert Figure 4 Here> 

Evaluation and Results 

In this section, we first introduce our design to quantitatively evaluate our proposed methodology and 

compare its performance with several baselines. Then we present the market structure derived from our 

learned brand representation, visualized using a sophisticated dimension reduction technique t-SNE. 

Evaluation using Link Prediction 

In studying market structure, there is lack of ground truth about the identified structure, that is, knowledge 

of what the “true” structure is.  As a result, demonstrating the performance of various proposed methods 

is challenging. One may argue that the industry classification (e.g., SIC or NAICS) of brands can be used 

for evaluation and face validity for the results.  However, these classification systems are static, do not re-

classify firms as the product-market evolves, and, therefore, are unable to accommodate innovations that 

create entirely new product markets (Bhojraj et al. 2003, Hoberg and Phillips 2016, Jacobs and O’Neill 

2003). To address the challenge, we propose an alternative and novel way to evaluate the identified 

market structure. An identified market structure is a function of the brand representation and so an 

accurate representation is more likely to identify valid market structures. This approach is supported by 

prior research showing a strong relationship between brand image and the characteristics of brand’s 

supporters and followers (Naylor et al. 2012, Kuksov et al. 2013, Culotta and Cutler 2016). If a network 

learning method is capable of accurately representing network nodes accounting for these relationships 

between brands and users, then it would be able to predict the future links between brands and users 

accurately. Therefore, we use a cross-validation procedure under a link prediction research design, where 

we predict the most likely formed links of user-brand engagement in an out-of-sample network given the 
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brand vectors and user vectors learned from a training network. We use the user-brand interactions from 

the first half of time span in our data to build a training network (G0,1) and use the second half to build a 

testing network (G1,2). G1,2 has 7,247,410 links (1,996,354 new links), formed by 1,547,762 users and 

1,511 brands (also in the training network). The likelihood of a link formation is measured by the 

proximity of a learned brand vector and a learned user vector. Note that link prediction performance is 

significantly correlated with the quality of learned vectors, given the assumption that a better network 

representation learning can predict new interactions between users and brands with a high accuracy.  

To demonstrate the superiority of our proposed method, we compile a set of representative baselines. 

Specifically, we compile a 2x2 research design with two different network structures (homogeneous vs. 

heterogeneous) and two different algorithms (shallow model vs. deep model). We follow prior literature 

in social network link prediction (Liben-Nowell and Kleinberg 2007) and use precision-recall as 

evaluation metrics (see details in Appendix A2). Note that the accuracy of a link prediction under a 

random strategy is approximately 0.085%.  

Overall, our analysis shows that (i) link prediction using representation learned from our 

heterogeneous user-brand network performs better than a reduced homogenous network – a widely used 

method by extant approaches; (ii) deep learning-based methods learn better representation than shallow 

machine learning methods; and (iii) our deep learning-based model is robust and able to handle sparse 

networks as compared to baselines. Table 4 and Table 5 summarize the performance for the case where 

we randomly select 100 and 1,000 users, respectively. Note that all p-values in parentheses are obtained 

under a t-test from 10 runs of every model. We can see that our method significantly outperforms 

baselines in both precision@k and recall@k at all different k’s. As an illustration, consider Column 4 

(with k = 1,000) in Table 4, the shallow model on the homogeneous brand-brand network has precision of 

0.078 which means that only 7.8% of the predicted links are actually formed during the testing period. In 

contrast, our deep model on the same network brings a slight improvement to 0.082. This suggests that 
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shallow and deep models have comparable performance when data is small and homogeneous. We then 

apply our deep model to the heterogeneous network, which significantly improves the precision by 

approximately 58.9% over traditional methods (0.124 vs. 0.078). We observe similar trends for metric 

recall@k. For k=1,000, shallow and deep models on the homogeneous network are able to retrieve 60.2% 

and 68.6% links, respectively (Table 4, Column 4). Further, precision@k decreases as k becomes larger, 

while recall@k increases. When k is large, many false links are predicted as well as true links. This 

reflects the famous precision-recall tradeoff that any model can be adjusted to improve precision at the 

expense of recall, or vice versa.  

By further investigating Table 4 (N=100) with Table 5 (N=1,000), we find that the precision is 

higher and the recall is lower when the number of selected users is large. This is expected because we 

have higher chances to select true positive links when the number of users increases. On the other hand, 

the total number of true links in the testing network also increases by a magnitude, and thus the recall 

decreases.  

<Insert Table 4 Here> 

<Insert Table 5 Here> 

To study the impact of training size on performance, we vary the training size with different network 

sparsity. We randomly remove a certain percentage of links from the training network and learn 

representation of users and brands. Then we predict user-brand links and measure the precision and recall 

using the out-of-sample testing network. As we can see in Table 6, our method still significantly 

outperforms baselines, especially when network sparsity is extremely high. For example, our method 

improves the precision@1000 by 77.7% (0.183 vs. 0.103) and recall@1000 by 55.0% (0.080 vs. 0.124), 

when only 10% links are kept in the training network. This suggests that our method handles sparsity 

better than baselines, which is very important since most real-world networks are extremely sparse. 

<Insert Table 6 Here> 
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Visualization of Market Structure 

With the learned brand representation vectors, we can visualize how the brands are grouped from a global 

perspective, and even zoom-in to examine local fine-grained brand relationships. We use t-SNE to obtain 

market structure visualization. t-SNE (Maaten and Hinton 2008), a dimension reduction technique, has 

been shown to preserve global structure better than the multi-dimensional scaling (MDS) (e.g. Kim, 

Albuquerque, and Bronnenberg 2011). In our context, we use t-SNE on the learned 300-dimensional 

brand representations to obtain the associated 2-dimensional visualization map5. Figure 5 presents the 

global structure of the brands in our Facebook data. Each data point in the figure denotes a brand 

belonging to one of the 25 categories, and each category is indicated by a different color. We can interpret 

the visualization as follows: the closer any two brands are in the figure, the more similar their brand 

representations are in the 300-dimensional space (see Figure 5).  The color codes in the map indicate 

brands in the same Facebook category, with the category label self-identified by the brands themselves on 

Facebook.   

<Insert Figure 5 Here> 

There are several observations from the global Facebook brand market structure map.  First, there 

are clear grouping patterns into clusters, particularly between brands in the same industry (points with 

same color tend to be in a group). For example, Cluster 1 in Figure 5 includes non-luxury domestic and 

imported automobile brands such as Toyota, Nissan, Mazda, as well as some automobile accessories 

brands such as Michelin, DENSO, and Auto Parts. Note that in our data we have several luxury car 

brands such as BMW, Mercedes-Benz, Audi, Tesla, and Maserati, which are not close to the brands in 

Cluster 1. In fact, they are clustered in a different region of the map with other luxury brands such as 

 
5 t-SNE aims to minimize the Kullback-Leibler divergence (KL-Divergence) between the probability distribution 

over pairs of data points in the original high-dimensional space and that in the reduced dimension space. It involves 

some hyperparameters, which are tuned based on the model perplexity measured by the Bayesian Information 

Criteria (BIC) (Schwarz 1978). In our analysis, we choose a variant of BIC (Cao and Wang 2017). We find the 

perplexity score of 40 in a range of 10 – 50 achieves the best BIC criteria. Other hyperparameters, such as learning 

rate and the number of iterations are set to the values when the KL-divergence gets converged. 
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Channel, Gucci, Cartier, and others. Such a separation between luxury car brands and non-luxury car 

brands further confirms that brand representation learned from our approach captures latent semantics in 

multiple dimensions, not only on the industry dimension but also on the price dimension.  Second, some 

brands appear in categories which are different than what one would normally expect. There are two 

explanations for this mis-categorization (in addition to the one related to the latent semantics captured in 

the luxury-non-luxury automobile case).  First, our category label is obtained from the self-identified 

category label indicated by each brand on Facebook. For example, Amazon lists itself in the e-commerce 

category instead of the e-commerce category while Apple’s chosen category is service rather than 

electronics. Second, each brand might have several businesses across different categories. For example, 

Amazon’s business is related to the high-tech, shipping and delivery industry, as well as retail and 

supermarket (after acquiring Whole Foods) industries.  The strength of our methodology lies in capturing 

these relationships into a single map given the ease with which it locates thousands of brands in the 

market structure map, thereby highlighting the complex and possibly overlapping product-market 

boundaries characterizing these brands. 

To further examine the specifics of the product-market boundaries, we zoom-in on the four clusters 

in the figure to examine the fine-grained local market structures, which are displayed in Figure 6. 

Subfigure 1 which we already discussed displays automobile brands along with automobile accessories 

and motorcycle brands at the top. Subfigure 2 displays premium vacation resort brands, such as The 

Signature at MGM Grand and the Coconut Bay Beach Resort & Spa. Subfigure 3 and Subfigure 4 contain 

airline brands and cosmetic brands, respectively.  Taken together these maps provide face validity to our 

methodology in terms of core brands making up an industry and the overlaps among product-markets.  

<Insert Figure 6 Here> 
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Identifying Proximal Brands 

While visual mapping is sufficient to provide a gestalt picture of all the five thousand plus brands in the 

aggregate, it does not provide the actual distance between the brand vectors in the reduced dimension 

space.  Since identifying proximal brands for substitute/complement analysis is a critical task in 

marketing decisions (Day et al. 1979), we focus on identifying proximal brands from the perspective of a 

focal brand. In doing so, we offer a new perspective that reflects the nature of relationship ranging from 

substitutes to complements in the social network space. 

In this illustration, we choose United Airlines and Southwest Airlines from the airlines category and 

Audi USA and Nissan from the automobile category, as these brands are generally regarded as having 

different consumer bases and belonging to different sub-markets. Each of the four brands is referred to as 

a focal brand, and we find their top-10 proximal brands based on cosine similarity. From the results in 

Table 7 we can obtain several interesting insights. First, our method is able to capture specific brand 

latent characteristics. For example, Southwest Airlines is generally considered as a low-budget airline 

compared to United. The brands most proximal to Southwest Airlines and United reflect this difference. 

The proximal brands for Southwest Airlines are JetBlue, Frontier Airline, and Allegiant, while the most 

proximal brands for United are major domestic and international airlines, such as American Airlines, 

Delta, Lufthansa, All Nippon, Air China, LATAM Airlines, and Air New Zealand. Similar results also are 

identified in the automobile industry. Top proximal brands to Audi USA are Mercedes-Benz USA and 

BMW USA, which are generally high-end luxury car brands. In contrast, Nissan is closer to Mazda, 

Toyota, and Volkswagen, all of which produce more affordable cars.  

Second, we also observe the asymmetric competition (cf., Ringel and Skiera 2016). Given a brand A 

and its top proximal brand set SA, we can identify a set of brands SB that is proximal to a brand B that 

appears in SA. SB need not necessarily contain A. And even if 𝐴 ∈ 𝑆𝐵, the order of A in SB might be very 
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different from the order of B in SA. For example, Southwest Airlines is the fourth most proximal brand to 

United while United ranks sixth in the set of top proximal brands to Southwest Airlines.  

Third, unlike prior market structure analysis where proximal brands are usually from the same 

industry as the focal brand, the top most proximal brands derived from our analysis are from different 

industries. For example, a brand called “Airfarewatchdog” is proximal to both United and Southwest 

Airlines. Airfarewatchdog is a deal-finder for flight tickets and has a large follower base (over 1 million) 

on Facebook. Traditional market analysis may simply ignore this brand, as it is not an airline. Further, it 

is also interesting to see that Southwest Airlines is closer to Airfarewatchdog than to United which may 

indicate that the fans of Southwest Airlines are more likely to use a deal finder before purchasing flight 

tickets; thus, Airfarewatchdog could be a complement to Southwest when customers look for cheap 

flights at that site and end up at Southwest, or it could potentially compete with Southwest. In either case, 

Southwest could focus more on this site and examine the nature of the relationship. Similarly, we see 

Kawasaki USA, an innovative motorsport vehicle manufacturer, is proximal to Audi USA. This cross-

industry brand proximity very well demonstrates that representation learning can capture latent 

characteristics of brands and explore brand relationship from different perspectives. We believe this 

advantage can provide new insights to marketing analysis as we show next. 

<Insert Table 7 Here> 

Identifying Opportunities/Threats 

Our market structure map can help managers identify brands outside of the product-market that are close 

to a specific brand within the product-market and thus identify opportunities and threats to different 

brands. Let’s take the airlines (Subfigure 3) product-market as an example. Based on our analysis, Disney 

Cruise Line and Hyatt are two brands outside of the airlines product-market, but are identified as 

proximal brands to Southwest but not for United. These proximal locations simply are due to a greater 

number of users in our dataset liking both Southwest and Hyatt (2709) versus number of those users 
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liking both United and Hyatt (954). Similarly, a greater number of users like both Southwest and Disney 

Cruise (3050) than those liking both United and Disney Cruise (729).  Our link prediction validation 

exercise where we divide the dataset into first half as the training set and the second-half as the hold-out 

for link prediction, also confirms the robustness of these proximal locations.  In the hold-out set, there are 

1,738 Disney Cruise Line users who also engage with Southwest, out of which 1,257 engaged with other 

brands, but not Southwest, in the training set. Since our methodology learns that Disney Cruise Line and 

Southwest Airlines have similar representations, as they are shown to be neighbors in Figure 5.3, it 

predicts a link between those 1,257 Disney Cruise Line users and Southwest than any randomly selected 

users, confirming that these proximal relationships we find are robust.  

Such findings can provide opportunities for Southwest as they can target those who like Disney 

Cruise and Hyatt in social media. They can cross-promote these brands by teaming up with Disney Cruise 

and/or Hyatt on each other’s websites. They can also launch coalition loyalty programs.  From the 

viewpoint of other hotel chains who are competitors to Hyatt, these could be potential threats so getting 

such insights early on may help them take proactive actions. Such opportunities/threats are difficult to 

identify when product-markets are pre-specified, and they cannot be obtained easily through other means.   

Large brand versus Small brand 

Our user engagement dataset contains top 5,478 brands, ranked by their popularity (number of followers 

as of data collection period) on Facebook which are primarily large brands. A key question is whether our 

proposed approach is still able to identify meaningful market structure for smaller brands. Small brands 

have the potential to increase consumer awareness and interest towards them (Hanssens et al. 2014) if 

they can find right positions in the product-market structure, which could lead to permanent benefit in 

terms of them gaining a competitive advantage (Slotegraaf and Pauwels 2008). Therefore, to test whether 

our methodology is able to capture relationships among large brands as well as small and local business 

brands, we add a set of smaller brands to the original dataset. Specifically, we focus on the “Travel” 
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category as it includes many small local travel agencies, and their followers on Facebook range from a 

few hundreds to a few thousands on average. In total, we have 242 additional brands. Figure 7 plots the 

distribution of brand size of these additional brands. It shows that the travel brands are much smaller than 

those in the original dataset. 

<Insert Figure 7 Here> 

Upon applying our methodology to the enlarged dataset, we can observe (Figure 7) that these 242 

travel brands are predominantly located in two areas. This pattern indicates that the latent brand 

relationship is well captured, even when brands have few engagement activities due to their smaller user 

bases. This result also highlights the advantage of our deep network representation learning method.  This 

is a distinct advantage of our user-brand heterogenous network-based approach as brand representation 

can still be achieved via direct learning the first- and the second-order connectivity using deep learning. 

In a homogenous network such small number of shared user base could result in a failure to capture such 

proximal locations. 

The market structure uncovered for these small businesses by identifying their proximal brands has 

good face validity. For example, “The Luxury Travel Expert” is an information portal for luxury travel 

and premium tours, with about 11,000 followers on Facebook, as of our data collection period. Most posts 

receive less than 10 comments and likes. The top 10 proximal brands based on the cosine similarity are: 

“Smithsonian Journeys,” “The Peninsula Beverly Hills,” “Peter Sommer Travels,” “Quasar Expeditions,” 

“DuVine Cycling,” “International Expeditions,” “TCS World Travel,” “Zegrahm Expeditions,” “Liberty 

Helicopters,” “Frosch Travel.” It is noteworthy to observe that they are also small travel brands, with 

focuses on expert-led, small-group, luxury and premium tours. The results further confirm that our deep 

network representation learning method is generalizable to both small and large brands.  
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Within-Industry Market Structure Analysis 

Extant methods typically pre-define the product-market boundary to derive market structure and brand 

relationships. In contrast, we allow the product-market boundaries to emerge from data. Therefore, a 

natural question is whether it is necessary to have a broader range of brands from other industries to 

derive a high-quality market structure of a specific industry. While managers would typically focus on 

engagement data for their brands and for brands within the same industry, how does engagement data 

from brands in different categories help? To answer this question, we choose the “auto” category and only 

use the engagement data from the “auto” brands to derive the market structure. In the dataset, we have 

163 “auto” brands, including cars and car accessories brands (such as tires, oil), and 2.7 million user 

engagements in total. The analysis shows (Figure 8) that structures with reasonable face validity still 

emerge using only the “auto” brands data. For example, the top left corner in Figure 8 (right) presents a 

cluster of imported auto brands such as Kia Motor America, Toyota, Nissan. However, compared against 

the derived “auto” brand market structure learned from using all brands data, as shown in Figure 6 (1), the 

market structure is less clustered and more ambiguous. 

We now compare the market structure using the engagement data from the “auto” brands alone with 

that from all brands across categories in a qualitative manner. Specifically, we choose the brand “FMF 

Racing,” which is a company that develops dirt bike exhausts for off-road or racing motocross riding. 

Using the engagement data from the “auto” brands alone, the top 10 proximal brands are “Lucas Oil,” 

“KTM USA,” “Yamaha Motor,” “Arctic Cat,” “Two Brothers Racing,” “Phoenix Pro Scooters,” “Auto 

Alliance,” “Valvoline USA,” “Lance Camper,” “Castrol.” Some are related to off-road motocross riding, 

while others are not. For example, “Lucas Oil,” “Valvoline USA” and “Castrol” are global brands of 

automotive oil. “Auto Alliance” is a trade group of automobile manufacturers, and “Lance Camper” is a 

manufacture of travel trailers and truck campers.  
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In contrast, the top 10 proximal brands to “FMF Racing” emerging from using all categories data are 

“KTM USA,” “Polaris Snowmobiles,” “Fox Racing,” “Mickey Thompson Performance Tires & Wheels,” 

“Two Brothers Racing,” “King Shocks,” “Arctic Cat,” “Addictive Desert Designs,” “NISMO,” “Skunk2 

Racing,” “MBRP performance exhaust.” Upon further investigation, we find that they are all related to 

off-road motocross riding. Some of them are under different category labels on Facebook. For example, 

“Fox Racing” is labeled as a “retail” company, and it sells motocross and mountain biking gear and 

apparel. The above results indicate that our approach with engagement data from brands across industries 

can learn better brand representation and thus a high-quality market structure. To sum up, the power of 

our deep representation learning for market structure discovery will be at its best when we observe a large 

scale of user engagement with different brands.  

Robustness Check: Visualization Method 

 Several dimension reduction methods are available for visualizing high-dimensional data. To check 

whether our derived market structure (300-dimensional representation of brands) is sensitive to the choice 

of visualization methods, we compare the t-SNE with two widely used ones: UMAP (McInnes et al. 2018) 

and PCA (Wold et al. 1987). UMAP is a recent non-linear visualization technique with its notably fast 

speed and better preservation of the global structure in high-dimensional data. Principal Component 

Analysis (PCA) is a canonical linear dimension reduction method. Figure 9 shows the visualization of the 

derived market structure using UMAP and PCA. Similar to t-SNE, the visualization generated by UMAP 

exhibits clear clustering patterns in that points with same color tend to be in a group (color represents the 

Facebook category). On the contrary, PCA does not separate industries well. This can be explained by the 

fact that PCA is a linear transformation method that may not be good at preserving the global and local 

structure of data in the high-dimensional space. This robustness check confirms that the learned brand 

representation intrinsically encodes some latent relationships which can be used for discovering market 

structure.  
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<Insert Figure 9 Here> 

Case Studies on Market Structure Dynamics 

Market structure evolves over time and can change dramatically especially under an unexpected industry 

shock. Whether our proposed method can be adaptively learned is also of interest as it could provide 

useful insights to marketing practitioners. In this section, we analyze how market structure changes under 

exogenous shocks by analyzing two case studies: (1) Amazon acquiring Whole Foods, and (2) Tesla 

introducing the Model 3. We take a before-after strategy where we use data for 3-month pre- and 3-month 

post the event announcement day and calculate the change in distance from the focal brand (e.g., Amazon 

and Tesla) to other representative brands that are selected from the same category. The purpose of the 

event study is to examine how a focal brand relationship with other brands change as a major event occurs. 

Specifically, for Amazon-Whole Foods, we select several brands from the retail and e-commerce category, 

and for Tesla, we select several brands from the auto category. This demonstrates that our proposed 

approach is able to learn effective representation; as a result, the dynamics in market structure are well 

captured. We calculate the change between focal brand 𝑖′s representation 𝑤𝑖
𝑏  and target brand 𝑗′s 

representation 𝑤𝑗
𝑏 before and after the specific event using cosine similarity: 

𝑐𝑜𝑠𝑠𝑖𝑚 (𝑤𝑖
𝑏

𝑎𝑓𝑡𝑒𝑟
, 𝑤𝑗

𝑏

𝑎𝑓𝑡𝑒𝑟
) − 𝑐𝑜𝑠𝑠𝑖𝑚 (𝑤𝑖

𝑏
𝑏𝑒𝑓𝑜𝑟𝑒

, 𝑤𝑗
𝑏

𝑏𝑒𝑓𝑜𝑟𝑒
) . Therefore, positive numbers indicate 

similarity increase while negative numbers mean the decrease in similarity.  

Amazon acquires Whole Foods 

Amazon acquired Whole Foods in June 2017. This acquisition has had significant impact on the grocery 

and retail industries. It is widely believed that Amazon plans to use its acquisition of Whole Foods to 

enter into the online grocery delivery business. Amazon and Whole Foods run separate Facebook pages. 

After the merger of the two firms, we see from Figure 10 that Amazon is more proximal to retail brands 

as measured by cosine similarity, while the proximity to other relevant brands decreases slightly. For 

example, the cosine similarity between Amazon and Loews Home Improvement decreases by 0.184. In 
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contrast, the cosine similarity between Amazon and other super-market brands increases. Among them, 

proximity of Amazon to Whole Foods increases by 0.202, and increases between Amazon and Kroger by 

0.165. As inferred from our data-driven model, Amazon even becomes more proximal to Walmart 

indicating that Amazon’s competitive market structure landscape has shifted. By further examining our 

data, we find that after the Whole Foods acquisition the number of common users who interact with both 

Amazon and Whole Foods on their Facebook public pages increases. Some Amazon users posted 

comments on Whole Foods fan page mentioning Amazon. For example, in a Whole Foods post “Here are 

6 New Healthy Products Coming to Whole Foods in March,” a user, who had liked an Amazon post 

earlier, commented “You mean AMAZON… as they bought Whole Foods…right?” This direct link 

between Amazon and Whole Foods leads the deep Autoencoder to strength the proximity between the 

two brands. Moreover, in another Whole Foods post, a user who had liked a Kroger post earlier posted 

“The quality has gone downhill and prices have soared…. You’ve made Kroger look appealing….’’ 

Although we do not find this user has ever interacted with Amazon before, her interaction with Whole 

Foods leaves an implicit connection between Amazon and Kroger which could be captured by the deep 

Autoencoder. In short, after Amazon acquired Whole Foods, online social media users who are Amazon’s 

fans pay more attention to Whole Foods, and users who are fans of other supermarket brands engage more 

with Whole Foods due to the acquisition event. As a result, the deep Autoencoder captures the dynamics 

and updates the brand representation accordingly.  

<Insert Figure 10 Here> 

The acquisition by Amazon has an impact on the market structure of Whole Foods too. In Figure 11, 

we consider Whole Foods as the focal brand and calculate the change in proximities to other brands 

before and after the acquisition. Based on the results, we observe that Whole Foods’ proximity to other 

retail brands such as Target, Walmart, and Best Buy increases. Among them, the proximity to Amazon 

increases the most due to the increased common users between them. In contrast, Whole Foods’ 
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proximity to supermarket brands such as Goya Foods, Enjoy Life Foods, and HelloFresh slightly 

decreases. Second, the magnitude of change in proximity values is smaller than that of Amazon to other 

brands. This seems to indicate that the acquisition has less impact on Whole Foods as it is still positioned 

around other supermarket brands, while Amazon is expanding closer to the grocery retail category. 

<Insert Figure 11 Here> 

Tesla announces the Model 3 

Tesla sells two types of sedans, the Model S and the Model 3. The Model S is a luxury premium sedan 

with a larger range of acceleration and customization options, while the Model 3 is designed and built as a 

mass-market affordable electric vehicle. The Model S can cost over $100,000 depending on the 

configuration, while the Model 3 costs approximately $35,000. After the announcement of the new Model 

3, we see that Tesla becomes more distant from luxury car brands and get closer to non-luxury car brands. 

Examining data from the Auto Gallery, a Southern California premiere luxury and exotic dealership, we 

can see in Figure 12 that the cosine similarity between Tesla and luxury car brand Maserati decreases by 

0.209. Similar trends exist between Tesla and other high-end or luxury car brands such as BMW, 

Mercedes-Benz, Audi, and so on. Meanwhile, Tesla becomes more proximal to Kia, Mazda, and other 

more affordable car brands. 

<Insert Figure 12 Here> 

Testing for Significance 

In the above analysis, we compute the distance change between the focal brand (e.g., Amazon or Whole 

Foods) and other brands, before and after the acquisition. We can see that there is a significant increase in 

similarity between Amazon and Whole Foods after the acquisition. However, whether this distance 

change is caused by the acquisition or other unobserved factors, such as the difference of data split and/or 

noise, still remains unclear. Therefore, we conduct a further analysis by randomly splitting all data before 

the acquisition into two parts (i.e., d1 and d2, with d1 before d2). We then measure the distance between 
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Amazon and Whole Foods using d1 and d2 separately. We repeat this process 30 times using different 

data cuts in the pre-acquisition data. The average distances between the two brands across using all d1s 

and d2s are 0.228 and 0.232, respectively. The two-tailed t-test on the distance is 0.055, which indicates 

there is no statistically significant difference between the distances between Amazon and Whole Foods 

before and after the acquisition in different cuts of the pre-acquisition data. Accordingly, the substantial 

increase in similarity between Amazon and Whole Foods is not attributed to sample differences. 

We perform a similar process on Tesla’s introduction of the Model 3. In particular, we choose one 

non-luxury brand, Mazda, and compute its distances to Tesla before the event using various data splits. 

The average distances between Mazda and Tesla across using all d1s and d2s are 0.185 and 0.191, 

respectively, with a p-value of 0.076. This seems to indicate there is no statistically significant difference 

between Mazda and Tesla when the cutting point of data varies before the event. Therefore, we conclude 

that after Model 3’s announcement, Tesla becomes more similar to non-luxury automobile brands on the 

social media platform. Note that we also conduct analyses on Tesla and other automobile brands and the 

results are consistent. 

External Validation 

The brand market structure and case studies described so far help us to reveal brand relationships using 

online social media users’ brand engagement. A question that naturally arises is the extent to which online 

social media users’ brand engagement aligns with other source of data. In this section, we collect search 

data from Google and derive market structure from the search data, in order to compare the external 

validity of proposed approach.  

External data: We use the Google Search Trend data. It provides an interest score for every search query 

across regions and languages, as measured by an aggregated search volume over time. A higher interest 

score means that queries are more popular in a specific region and time. Google search trend data has 

been widely used by industry (Shimshoni et al. 2015) and academia (Choi and Varian 2012, Du and 
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Kamakura 2012, Kim and Hanssens 2017, Stephen and Galak 2012) to address marketing and economic 

problems, e.g. competitive analysis. Researchers also show that this score is consistent with consumers’ 

purchase interest at large (Choi and Varian 2012, Du and Kamakura 2012). 

To obtain a relative popularity for every pair of brands, we make a search query consisting of two 

brand names, for example, “Toyota BMW” or “BMW Toyota” for the brands Toyota and BMW. Note 

that this simple strategy might miss some search volumes when the query has other words related to 

brands, such as “Camry,” “X5 series.” For every brand pair, we can obtain an interest score returned by 

Google. For example, in the region of United States in 2017, the search interest score is 13 and 85 for the 

query “Toyota BMW” and “Toyota Honda,” respectively. This also indicates that consumers at large are 

more interested in searching Toyota and Honda together, as compared to searching Toyota and BMW 

together.  

External Validity 1: In the first validity exercise, we focus on the Airline industry and the derived 

market structure. We have 19 airline brands in our dataset, including United States domestic airlines and 

International airlines. For every brand pair, we first obtain Google search interest score in the region of 

United States in 2017 (the same as our engagement data period). Then following previous work (Netzer et 

al. 2012), we calculate the similarity between two brands A and B as 𝑠𝑖𝑚(𝐴, 𝐵) =
𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝐴,𝐵)

∑ 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑏,𝐵)𝑏∈𝑆
, where 

𝑆 is the set of all brands (e.g. 19 here). Netzer et al. use the co-occurrence of two brands in an online 

discussion forum, instead of a Google search interest score.  

Meanwhile, we also calculate similarity for every pair of 19 airline brands using 300-dimensional 

vectors derived from our deep network representation learning on the engagement data. Cosine similarity 

is applied.  

To check whether two above similarity systems are well aligned, we calculate their Pearson’s two-

tailed correlation between two sets of 361 (=19*19) similarity scores. It is significantly highly-correlated 
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(𝑟 = 0.630, 𝑝 = 0.0000). This indicates that our social engagement based market structure is highly 

correlated with that derived from Google search trend. Since prior studies have shown that the Google 

search data trend has a high correlation with consumer’s actual purchase, we can conclude that users’ 

social engagement with brands may also contain valuable information for deriving brand relationships.  

External Validity 2:  We now validate the case study, Amazon acquiring WholeFoods, using Google 

search trend data.  Similar to the first external validity exercise, we choose a total of 29 “retail” brands 

plus Amazon, (Amazon, Walmart, Target, Macys, Best Buy, Walgreens, Lowes, Whole Foods, IKEA, 

Sears, 7-Eleven, Dollar General, Sams Club, Dollar Tree, CVS Pharmacy, ALDI, Barnes Noble, Costco, 

Kroger, Meijer, Safeway, Office Depot, Rite Aid, Albertsons, ShopRite, and The Fresh Market) and 

obtain their interest scores for every brand pair in the region of United States in 2017. Note that we 

exclude some small “retail” brands such as Goya Foods, since their Google co-search interest scores with 

other brands are mostly 0, indicating not enough search data for the brand.  

The Pearson’s two-tailed correlation between two sets of 900 (=30*30) similarity scores is 

significantly high, (𝑟 = 0.675, 𝑝 = 0.0000) for before acquisition, and (𝑟 = 0.758, 𝑝 = 0.0000) for after 

acquisition. This result confirms the external validity of our social engagement based method. We observe 

that for Amazon, the most similar brands are Barnes & Noble, Macys and Best Buy before acquisition. 

After acquisition, the most similar brands are Whole Foods, Barnes & Noble and Macys. For Whole 

Foods, the most similar brands are The Fresh Market, Albertsons and ShopRite before acquisition. After 

acquisition, the most similar brands are The Fresh Market, Amazon and Safeway. 

We obtain further search interest data for one year after the acquisition (June 2017 to June 2018) 

because we wanted to examine whether the market structure change is sustained for a long period after 

the acquisition announcement. For Amazon, the most similar brands are still “Whole Foods,” “Barnes & 

Noble” and “Macys.” Other grocery “retail” brands such as Kroger, The Fresh Market become more 

similar to Amazon than that before acquisition. For Whole Foods, the most similar brands are “The Fresh 
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Market,” “Safeway,” “ShopRite” and “Amazon.” This indicates that for Amazon, the acquisition impact 

holds for the extended period of analysis, since Whole Foods is still its most similar brand among these 

retailer brands. It seems that the acquisition has less impact on Whole Foods as it is still positioned 

around other supermarket brands. All findings are consistent with our case study using social engagement 

data providing external validity to our results. 

Implications and Conclusion 

As our proposed approach handles a larger number of brands and millions of user engagement data across 

these brands, the results are very useful for brand managers to get a gestalt view of the relationships 

across thousands of brands. The visualization of potentially overlapping product-market boundaries 

across many categories helps managers to identify latent threats and potential opportunities which cannot 

be done with extant methods. For example, for Southwest, is Airfarewatchdog a potential competitor who 

might draw visitors away from Southwest or is it a complementor who would increase visits to Southwest?  

Having identified the overlapping market with Airfarewatchdog, Southwest could invest more attention to 

evaluate the exact nature of this relationship. If Airfarewatchdog is a competitor, then Southwest might 

focus on developing strategies to differentiate itself and channel visitors to its website exclusively. If it is 

a complementor, then Southwest might run display ad campaigns on Airfarewatchdog’s website. Also, 

given Hyatt is closely associated with Southwest with common users who “like” both brands, Southwest 

could run mutually beneficial joint promotions with Hyatt. Identifying such unusual or unexpected 

insights is the greatest advantage of our approach. 

Another important strategic use of our market structure maps is to identify competitors and 

complementors across industries and track how these relationships change over time. While Hoberg and 

Phillip (2016) use text analysis to 10-K statements to identify such grouping based on product 

descriptions that the firms provide, we provide a more dynamic structure based on actual customer/user 

social media activities. Moreover, our market structure map is more forward-looking and predictive of 
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emerging competition and complementors and more proactive than those based on 10-K statements, 

which can be viewed as reactive. Since Hoberg and Phillips (2010) show that merging firms with more 

similar product descriptions in their 10-Ks results in more successful outcomes, using our market 

structure maps to identify merger and acquisitions targets (firms sharing common users) may have similar 

benefits. For example, given that Kawasaki USA, a motorsport vehicle manufacturer, is proximal to Audi 

USA, is there a benefit for Audi USA to acquire Kawasaki USA? 

The power of our method lies in its ability to capture the dynamic changes in market structure. Since 

the maps are based on the analysis of big data which can be collected in a relatively short window of time, 

our methodology can be used to track changes in their relative position when firms introduce new 

products, new promotions, and new marketing initiatives. The case studies that we highlighted provide 

good illustrations of this. Additionally, although we have not analyzed this in the paper, firms can deploy 

our method to enhance their social network-based marketing efforts by better targeting specific potential 

customers, since user nodes in the network are also learned and represented as vectors in the same multi-

dimensional space as brands. Our link prediction design demonstrates a possible utilization for targeting. 

Lastly, our proposed method is generalizable to other similar platforms if we can construct a 

heterogeneous user-brand network from public fan pages’ engagement data.  

Our research has some limitations. First, our analysis is conducted on one social network, Facebook. 

Even though Facebook is one of the largest online social networks that has billions of users and thousands 

of brands, it is likely that users on different platforms may exhibit different engagement behavior and 

some of the research findings may not be generalized to other platforms. For example, it is reported that 

Instagram users and Facebook users have different age groups6. We could apply the same technique to 

other social media platforms and compare findings. When it comes to the dynamic market structure 

analysis, we generate a series of networks at each give time window. Our current analysis treats these 

 
6 https://www.statista.com 
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networks as equally important. In fact, the networks at an earlier stage might affect subsequent networks, 

because user-brand interactions might be dependent on their prior activities. Incorporating dependency 

among networks in a temporal way into the representation learning algorithm can improve market 

structure analysis, which we leave as our future work. Finally, each link in the user-brand network is 

created when the user engages with the brand on the public page. Facebook has introduced various 

reaction emotions to the platform to allow users interact with brands in different ways, such as ‘Like,’ 

‘Love,’ ‘Haha,’ ‘Wow,’ ‘Sad’ and ‘Angry.’ Future work can build a multi-relation network to deeply 

capture user-brand engagement heterogeneity.   
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Table 1: Comparison of different types of work on market structure discovery 

  Primary/Survey 

Data 

Text Mining Social Tag-based Search Data Shopping Data Social 

Engagement  

Data Volume Small Large Large Large Very large Very large 

Data Veracity Authentic Noisy Moderately noisy Moderately noisy  Authentic Moderately noisy 

Privacy 

Preserving 

Yes Yes Yes No (need to insert 

a tracking pixel) 

Yes Yes 

Data Availability Low (need to do 

survey) 

High (publicly 

available) 

High (publicly 

available) 

Low (need to 

insert a tracking 

pixel) 

Low (need to 

partner with 

retailers) 

High (publicly 

available) 

Data pre-

processing cost 

Low (use 

consideration set 

directly) 

High (text mining 

is error-prone) 

High (text mining 

is error-prone) 

Low (use 

consideration set 

directly) 

Low (use product 

co-occurrence) 

Low (use network 

raw data) 

 

Table 2: Summary of difference among extant literature on market structure discovery 

  Kim et al. 

2011 

Lee and 

Bradlow 2011 

Netzer et al. 

2012 

Ringel and 

Skiera 2016 

Culotta 

and 

Cutler 

2016 

Nam, Joshi 

and 

Kannan 

2017 

Gabel et al. 

2019 

Our study 

Objective To visualize 

user search 

behavior and 

understand 

market 

structure 

To visualize 

competitive 

market 

structure using 

text mining on 

customer 

review 

To visualize 

competitive 

market 

structure using 

text mining on 

forum 

discussion 

To 

understand 

asymmetric 

competition 

in the product 

categories 

To infer 

attribute-

specific 

brand 

ratings 

To analyze 

user 

generated 

tags for 

marketing 

research 

To leverage 

NLP and ML 

for analyzing 

market 

structure 

To propose a 

novel deep 

network 

representation 

learning 

framework for 

market 

structure  

Homogeneous vs. 

Heterogeneous 

Homo Homo Homo Homo Homo Homo Homo Hetero 



Brands/Products 62 products, 

4 brands 

9 brands 169 products, 

30 brands 

1,124 

products 

200 

brands  

7 brands 133 

categories, 

30,763 

products 

5,478 brands  

Consumers/Users N.A. N.A. 76,587 100,000+ 14.6 

million 

N.A. N.A. 25,992,832 

Data sources Amazon Customer 

review at 

Epinions 

Online 

discussion 

forum 

Product 

comparison 

website 

Twitter Social 

tagging 

platform 

Delicious 

Retailer Facebook 

public fan 

page 

Data type Consumer 

search 

Text Text Consumer 

search  

Network Social tags Shopping 

baskets 

Network 

Brand association 

methodology 

Consideratio

n set 

Text-mining Text-mining Consideratio

n set 

Network 

learning 

Network 

learning 

Network 

learning 

Network 

learning 

Asymmetry Yes No No Yes No No Yes Yes 

Dynamic No No No No No Yes No Yes 

Dimension 

reduction 

Yes Yes No No No Yes Yes Yes 

External 

validation 

N.A. N.A. Purchase data,  

survey 

Survey Survey Brand 

concept map 

(survey) 

N.A. Event study,  

link prediction 

Privacy preserve Yes Yes Yes No (need to 

insert a 

tracking 

pixel) 

Yes Yes Yes Yes 

Data availability Low (need to 

collect data 

daily) 

High (publicly 

available) 

High (publicly 

available) 

Low (need to 

insert a 

tracking 

pixel) 

High 

(publicly 

available

) 

High 

(publicly 

available) 

Low (need to 

partner with 

retailers) 

High (publicly 

available) 

Data 

preprocessing 

cost 

Low (use 

consideration 

set directly) 

High (text 

mining is 

error-prone) 

High (text 

mining is 

error-prone) 

Low (use 

consideration 

set directly) 

Low (use 

network 

raw data) 

Low (tags 

are well 

defined) 

Low (use 

product co-

occurrence) 

Low (use 

network raw 

data) 

 



Table 3: Data description and statistics 

 

 

 

 

 

Table 4: Performance comparison for different models. The number of randomly selected users is N=100. 

precision@k k=10 k=100 k=500 k=1,000 k=5,000 k=10,000 k=100,000 

Homogeneous 

brand-brand 

network 

Shallow model  

0.400 0.262 0.132 0.078 0.022 0.012 0.001 

(0.109) (0.023) (0.018) (0.008) (0.002) (0.000) (0.000) 

Deep model 

0.410 0.271 0.139 0.082 0.023 0.014 0.001 

(0.092) (0.027) (0.020) (0.009) (0.003) (0.001) (0.000) 

Heterogenous 

brand-user 

network 

Shallow model  

0.430 0.291 0.157 0.095 0.028 0.018 0.001 

(0.102) (0.030) (0.024) (0.008) (0.005) (0.002) (0.000) 

Deep model 

0.52*** 0.322*** 0.173*** 0.124*** 0.034*** 0.028*** 0.001*** 

(0.092) (0.022) (0.051) (0.011) (0.008) (0.001) (0.000) 

recall@k k=10 k=100 k=500 k=1,000 k=5,000 k=10,000 k=100,000 

Homogeneous 

brand-brand 

network 

Shallow model  

0.031 0.260 0.488 0.602 0.828 0.918 0.996 

(0.008) (0.002) (0.060) (0.050) (0.036) (0.016) (0.005) 

Deep model 

0.032 0.275 0.505 0.621 0.832 0.912 0.997 

(0.013) (0.032) (0.054) (0.047) (0.049) (0.032) (0.003) 

Heterogenous 

brand-user Shallow model  

0.037 0.287 0.521 0.637 0.870 0.935 0.998 

(0.015) (0.065) (0.074) (0.045) (0.023) (0.047) (0.000) 

Number of brands 5,478 

Number of users 25,992,832 

Number of unique user-brand interactions 36,927,613 

Number of like interactions 87,876,623 

Number of unique user-brand like interactions 29,611,805 

Number of comment interactions 18,703,549 

Number of unique user-brand comment interactions 7,612,358 

Total number of user-brand interactions 106,580,172 



network 

Deep model 

0.056*** 0.311*** 0.582*** 0.686*** 0.897*** 0.967*** 0.999** 

(0.013) (0.035) (0.077) (0.054) (0.078) (0.024) (0.002) 

 

Table 5: Performance comparison for different models. The number of randomly selected users is N=1,000. 

precision@k k=10 k=100 k=500 k=1,000 k=5,000 k=10,000 k=100,000 

Homogeneous 

brand-brand 

network 

Shallow model 

0.460 0.387 0.331 0.291 0.130 0.078 0.012 

(0.132) (0.112) (0.021) (0.012) (0.004) (0.003) (0.000) 

Deep model 

0.490 0.393 0.332 0.295 0.131 0.078 0.012 

(0.020) (0.003) (0.018) (0.017) (0.003) (0.003) (0.000) 

Heterogenous 

brand-user 

network 

Shallow model 

0.500 0.422 0.344 0.320 0.162 0.087 0.012 

(0.102) (0.060) (0.022) (0.072) (0.010) (0.017) (0.000) 

Deep model 

0.522*** 0.436*** 0.365*** 0.355*** 0.187*** 0.091*** 0.013*** 

(0.092) (0.040) (0.012) (0.035) (0.014) (0.047) (0.000) 

recall@k  k=10 k=100 k=500 k=1,000 k=5,000 k=10,000 k=100,000 

Homogeneous 

brand-brand 

network 

Shallow model 

0.031 0.033 0.128 0.223 0.509 0.607 0.915 

(0.008) (0.021) (0.008) (0.008) (0.013) (0.013) (0.008) 

Deep model 

0.032 0.035 0.131 0.226 0.510 0.605 0.921 

(0.005) (0.047) (0.018) (0.011) (0.010) (0.015) (0.007) 

Heterogenous 

brand-user 

network 

Shallow model 

0.049 0.056 0.241 0.365 0.549 0.658 0.981 

(0.022) (0.009) (0.012) (0.010) (0.012) (0.024) (0.015) 

Deep model 

0.049*** 0.076*** 0.352*** 0.412*** 0.584*** 0.743*** 0.990*** 

(0.009) (0.003) (0.010) (0.007) (0.009) (0.008) (0.002) 



Table 6: Performance comparison for different sizes of training set. The number of randomly selected users is N=1,000. 

precision@1000 10% 30% 50% 70% 90% 100% 

Homogeneous 

brand-brand 

network 

Shallow model  

0.103  0.195  0.248  0.263  0.282  0.291  

(0.012) (0.008) (0.008) (0.012) (0.015) (0.012) 

Deep model 

0.097  0.190  0.248  0.267  0.284  0.295  

(0.042) (0.010) (0.021) (0.031) (0.023) (0.017) 

Heterogenous 

brand-user 

network 

Shallow model  

0.143  0.225  0.256  0.283  0.312  0.320  

(0.015) (0.031) (0.042) (0.008) (0.052) (0.072) 

Deep model 

0.183*** 0.242*** 0.273*** 0.301*** 0.337*** 0.355*** 

(0.024) (0.032) (0.037) (0.012) (0.032) (0.035) 

recall@1000 10% 30% 50% 70% 90% 100% 

Homogeneous 

brand-brand 

network 

Shallow model  

0.080  0.153  0.193  0.203  0.219  0.223  

(0.009) (0.006) (0.006) (0.007) (0.011) (0.008) 

Deep model 

0.075  0.150  0.194  0.204  0.220  0.226  

(0.005) (0.010) (0.007) (0.003) (0.005) (0.011) 

Heterogenous 

brand-user 

network 

Shallow model  

0.108  0.179  0.223  0.257  0.271  0.281  

(0.031) (0.018) (0.013) (0.026) (0.017) (0.010) 

Deep model 

0.124*** 0.198*** 0.24*** 0.289*** 0.314*** 0.352*** 

(0.009) (0.008) (0.019) (0.029) (0.008) (0.007) 

 

 

 

 



Table 7: Top 10 proximal brands to each focal brand 

Focal 

brand 
 United 

Southwest 

Airlines 
Audi USA Nissan 

 
 
 

Rank 
 
 
 
  

1 American JetBlue 
Mercedes-Benz 

USA 
Mazda 

2 Delta Frontier BMW USA Toyota 

3 Lufthansa Allegiant Land Rover Volkswagen 

4 Southwest Delta Lexus Kia Motors America 

5 Alaska Alaska 
Chevrolet 

Camaro 
Subaru of America 

6 All Nippon United Maserati USA Chrysler 

7 Air China Airfarewatchdog Kawasaki USA FIAT 

8 LATAM American Firestone Tires Jaguar 

9 Air New Zealand Virgin America Tesla Alfa Romeo 

10 Airfarewatchdog Hyatt Ram Trucks KLIM 



 
Figure 1: The overall framework of the proposed deep network representation learning 

 

 

 
Figure 2: An illustration of deep network representation learning 

 

 

 

 
Figure 3: Histogram of number of followers of 5,478 Facebook brands 
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Figure4: Degree distribution of brands 

in the user-brand network 

 
Figure 5: The global structure among brands in 

our Facebook data 

 

 

  

1 2 



  

Figure 6: Zooming-in on Clusters 1, 2, 3, and 4 

 

 

   

Figure 7: Distribution of brand size (log10 base) and the visualization of market structure of 242 

small brands 

3 4 



  

Figure 8: Visualization of market structure of using engagement data only from “auto” brands: all 

163 auto brands (left) and 27 large auto brands with more than 1 million followers (right) 

 

 

 

  

Figure 9: Visualization of market structure using UMAP (left) and PCA (right) 

 

 

 

 



 
 

Figure 10: Similarity change of Amazon to other brands in retail and e-commerce industry 

 

 

 Figure 11: Similarity change of Whole Foods to 

other brands in retail and e-commerce industry 

 

 
Figure 12: Similarity change of Tesla to other 

selected brands in the auto industry 

 

 



Appendixes: Identifying Market Structure: A Deep Network Representation 

Learning of Social Engagement 
 
A1: Deep Autoencoder 

In this study, the network representation, also known as network embedding, is learned through a 

deep Autoencoder, an unsupervised learning model consisting of two joint components, an 

encoder, and a decoder. The encoder, implemented by a deep fully-connected feed forward neural 

network, is a compressor that transforms the input data into a latent representation (e.g., a low-

dimensional vector), while the decoder is a reverter that reconstructs the latent representation 

back to the original input data. As the input data is often high dimensional (in a magnitude of 

millions), learning effective low dimensional representation (several hundred) in an efficient way 

while preserving information in the input data as much as possible is not trivial. In our case we 

study a large user-brand network where each brand (or user) node is originally represented as a 

one-hot encoding vector that is fed into the Autoencoder for learning a latent low-dimensional 

vector. To illustrate the Autoencoder in details, we first formally define user-brand heterogeneous 

network and network representation learning.  

Definition 1: user-brand Heterogeneous Network A user-brand heterogeneous network is 

denoted as 𝐺 = (𝑉𝑏 , 𝑉𝑢, 𝐸), where 𝑉𝑏 = (𝑣1
𝑏 , 𝑣2

𝑏 , … , 𝑣𝑛
𝑏) represents 𝑛 brand nodes, 𝑉𝑢 =

(𝑣1
𝑢, 𝑣2

𝑢, … , 𝑣𝑚
𝑢 ) represents 𝑚 user nodes, and 𝐸 = {𝑒𝑖,𝑗 }, 𝑖 ≤ 𝑚, 𝑗 ≤ 𝑛 represents all links 

between users and brands. 𝑒𝑖,𝑗  is the link weight that indicates the frequency of engagement 

between user 𝑖 and brand 𝑗. Engagement is defined as liking or commenting by a user on a 

brand’s Facebook fan page.  

Definition 2: Network Representation Learning Given a user-brand heterogeneous network 

𝐺, network representation learning aims to learn a mapping function 𝑓: 𝑣𝑖
𝑏 , 𝑣𝑗

𝑢 ⟼ 𝑤𝑖
𝑏 , 𝑤𝑗

𝑢 ∈ 𝑅𝑑, 

where 𝑑 ≪ min (𝑚, 𝑛). 𝑤𝑖
𝑏 , 𝑤𝑗

𝑢 are called brand embeddings and user embeddings, respectively.  



The objective of the mapping function is to learn good embeddings so that the brand 

proximities, brand-user proximities, and user proximities are preserved at maximum. More 

specifically, given network-like inputs, we tend to preserve the following two network structures 

into the learned representations. 

1. Similarity to neighbors. Our user-brand network is a bipartite network where brand nodes 

and user nodes are neighbors. A user node and a brand node are connected with a large weight, 

indicating a strong relationship between them. The similarity from this one-hop connection for all 

links between users and brands are measured by first-order loss function, denoted as 𝐿1𝑠𝑡. 𝐿1𝑠𝑡 

with weights incorporated incurs a penalty if neighboring nodes are projected far apart, similarly 

to the idea of Laplacian Eigenmaps (Belkin and Niyogi 2003). Therefore, minimizing 𝐿1𝑠𝑡 is an 

attempt to preserve local distances; if 𝑣𝑖
𝑏 and 𝑣𝑗

𝑢 are similar, then 𝑤𝑖
𝑏 and 𝑤𝑗

𝑢 are close in the 

embedding space.  

𝐿1𝑠𝑡 = ∑ ∑ 𝑒𝑖,𝑗(𝑤𝑖
𝑏 − 𝑤𝑗

𝑢)
2

𝑚

𝑖=1

𝑛

𝑗=1

 

2. Similarity to neighbors of neighbors. In our user-brand network, neighbors’ neighbors of a 

brand node are other brand nodes. Neighbors’ neighbors of a user node are other user nodes. If 

two brands share many common users, their similarity should be high. Similarly, if two users are 

fans for many common brands, their similarity should be high too. The objective of network 

representation learning is designed in such a way that a network structure similarity should be 

well captured. Therefore, to minimize the reconstruction error (denoted as 𝐿2𝑠𝑡) by compressing 

the latent information in hidden layers, the Autoencoder has the following objective function 

measured by second- order loss function, denoted as 𝐿2𝑛𝑑. 

𝐿2𝑛𝑑 = ∑(𝑥𝑖
𝑏′

− 𝑥𝑖
𝑏)

𝑚

𝑖=1

 2 + ∑(𝑥𝑗
𝑢′

− 𝑥𝑗
𝑢)

𝑛

𝑗=1

 2    



where 𝑥𝑖
𝑏  and 𝑥𝑗

𝑢 are the input of brand 𝑣𝑖
𝑏 and user 𝑣𝑗

𝑢 for the deep Autoencoder, respectively. 

They are represented as an adjacent one-hot encoding vector by all other nodes. The 

dimensionality of 𝑥𝑖
𝑏   and 𝑥𝑗

𝑢 equals the total number of brands and users (𝑚 + 𝑛) in the network. 

Each element in the vector corresponds to a node in the network. If the node at a particular index 

connects the brand node 𝑣𝑖
𝑏 (or user node 𝑣𝑗

𝑢), the corresponding element is marked as the 

engagement frequency, and as 0 otherwise. This adjacent representation is a very common way 

for representing nodes in a network (Liben-Nowell and Kleinberg 2007). 

Therefore, our overall objective function is to minimize the sum of first-order loss and 

second-order loss, as below. 

𝐿 = 𝐿1𝑠𝑡 + 𝐿2𝑛𝑑 =  ∑ ∑ 𝑒𝑖,𝑗(𝑤𝑖
𝑏 − 𝑤𝑗

𝑢)
2

𝑚

𝑖=1

𝑛

𝑗=1

+ 𝜆(∑ (𝑥𝑖
𝑏′

− 𝑥𝑖
𝑏)

2
𝑚

𝑖=1

+ ∑ (𝑥𝑗
𝑢′

− 𝑥𝑗
𝑢)

2
𝑛

𝑗=1

) 

𝑥𝑖
𝑏′ and 𝑥𝑗

𝑢′ are the output of the deep Autoencoder, which are the reconstructed 

representation of the input 𝑥𝑖
𝑏  and 𝑥𝑗

𝑢, respectively. The hyper-parameter 𝜆 plays a role to balance 

the first-order loss and second-order loss, and its value are tuned using grid search via the link 

prediction experiment. The essence of a deep Autoencoder is to minimize the reconstruction error 

between the input and output via deep neural networks. In particular, given input 𝑥𝑖
𝑏, parameters 

of the intermediate representation for each encoder layer are as follows: 

𝑤𝑖
1 = 𝜎(𝑊1𝑥𝑖 + 𝑏1) 

𝑤𝑖
𝑘 = 𝜎(𝑊𝑘𝑤𝑖

𝑘−1 + 𝑏𝑘), 𝑘 = 2, … , 𝐾 

After we obtain the intermediate representation 𝑤𝑖
𝐾, the output 𝑥𝑖

′ can be generated via a 

reversing operation of the encoder. That is, the network parameters of the 𝑘-th layer are shared 

between the encoder and decoder. The reconstruction process for the decoder layers is as follows: 

𝑤𝑖
𝐾′ = 𝜎(𝑊𝐾𝑥𝑖 + 𝑏𝐾) 



𝑥𝑖
′ = 𝜎(𝑊1𝑤1′ + 𝑏1′) 

 

We implement the above deep learning model using the Tensorflow library on Nvidia P100 

GPU. Gradient descent is used in optimization and parameter estimation. We also adopt dropout 

training (Srivastava et al. 2014), a common practice in neural network, to avoid overfitting. In our 

experiments, we use sigmoid function 𝜎(𝑥) =  
1

1+𝑒−𝑥  as the activation function to capture the 

non-linearity.  

Parameter tuning: It is well known that hyperparameter selection plays a critical role in deep 

learning model performance. In the proposed deep autoencoder network, the key parameters 

include: the brand representation dimensionality, the number of hidden layers, the number of 

neurons in each hidden layer, and the parameter 𝜆 in the loss function. Another important aspect 

to consider when selecting hyperparameters is the computational cost. An exhaustive parameter 

search is infeasible since it would be extremely costly both in computing power and time. For 

example, training for one parameter setting under using an Nvidia P100 GPU with 16GB GPU 

memory costs approximately 10 minutes. Therefore, we take a random search strategy (Bergstra 

and Bengio 2012), which is shown to be more effective and efficient than traditional grid-search 

for hyperparameter tuning. Specifically, we treat brand representation dimensionality as a 

uniform random variable in the range of 100 and 500. For the number of hidden layers, we need 

to make a tradeoff and set to 3, as an autoencoder with more hidden layers has more parameters 

to train and is prone to overfit, while an autoencoder with fewer hidden layers has less expressive 

power to learn complex patterns from large data. For the number of neurons in each layer, we do 

the following. We treat the number of neurons as a uniform random variable in the range of 2000 

and 5000, 500 and 1000 for the first and the second hidden layer, respectively. The number of 

neurons in the third hidden layer is the same as the network representation dimensionality. Finally, 



for parameter 𝜆 that controls the first-order loss and the second-order loss, since we expect to 

achieve a balance between network local structure (first-order) and network global structure 

(second-order), we choose 𝜆 = 1 without further tuning. We use the link prediction experiment to 

tune the hyperparameters, that is, the hyperparameter combination that achieves the best 

performance on the validation set is considered optimal and used for subsequent analyses. We 

split the entire dataset into 80% training, 10% validation and 10% testing. Using this random 

search, we find that link prediction performance becomes stable when the representation 

dimensionality is between 250 and 400, the number of neurons in the first and the second hidden 

layer is 5000 and 1000, respectively. Therefore, the final setting of our deep autoencoder is as 

follows. The representation dimensionality 𝑑 is 300. It has three hidden layers in the encoder, i.e., 

K=3. Each hidden layer has 5,000, 1,000, and 300 neurons, respectively. The decoder uses 

exactly the same number of hidden layers and neurons, i.e., 300, 1,000, and 5,000.  

 



A2: Link prediction 

The link prediction process follows the seminal work (Liben-Nowell and Kleinberg 2007). Let 

𝐺0,2 = (𝑉0,2
𝑏 , 𝑉0,2

𝑢 , 𝐸0,2) denote a network snapshot during a time period (𝑡0, 𝑡2). The network 𝐺0,2 

can be chronologically split into two non-overlapping sub-networks 𝐺0,1 = (𝑉0,1
𝑏 , 𝑉0,1

𝑢 , 𝐸0,1) and 

𝐺1,2 = (𝑉1,2
𝑏 , 𝑉1,2

𝑢 , 𝐸1,2) . Conventionally, we call 𝐺0,1 and 𝐺1,2  training network and testing 

network, respectively. The overall evaluation process is as follows. First, we train on 𝐺0,1  to 

obtain brand representation (and user representation). Second, we randomly select N users in the 

period of (t0, t1). For each user, we calculate its proximity to all non-connected brands. We sort all 

proximity scores for all N users and choose top k pairs (denoted as L) as predicted links. Finally, 

we evaluate the performance using two standard metrics: 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 and 𝑟𝑒𝑐𝑎𝑙𝑙@𝑘, defined 

below. Precision indicates the accuracy of the link prediction algorithm while recall is referred to 

as the true positive rate or sensitivity. The larger value for both metrics indicates the better 

performance. Note that we use precision-recall instead of ROC curves (and AUC) because the 

latter one is not a meaningful metric in the link prediction problem (Yang et al. 2015). In a social 

network, the ratio between formed links and all possible links is extremely low. For example, on 

Facebook, a user only interacts with a small number of brands. ROC curve, and its area (AUC) is 

equivalent to the probability of a randomly selected positive instance appearing above a randomly 

selected negative instance in the prediction score space. If we treat formed links as positive 

instance and non-formed links as negative links, due the high sparsity, such probability would be 

close to 1.0 (the perfect model) even for a mediocre learning model, which can be deceptive. 

Therefore, we follow prior literature in social network link prediction (Liben-Nowell and 

Kleinberg 2007) and use precision-recall as evaluation metrics.  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 =
|𝐿 ∩ 𝐸1,2 |

𝑘
,      𝑟𝑒𝑐𝑎𝑙𝑙@𝑘 =

|𝐿 ∩ 𝐸1,2 |

|𝐸1,2
𝑇 |

, 



where E1,2 is the set of all newly formed links in 𝐺1,2 . 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@1 checks whether a non-

connected brand-user pair with the highest proximity in the training period forms a link in the 

testing network. Note that this evaluation process might be slightly different when it comes to a 

brand-brand homogenous network where we only have vector representation for brands. To 

obtain the proximity scores to all non-connected brands for N randomly selected users, we 

employ a weighted average strategy, a similar idea used in the item-based collaborative filtering 

framework. For each user ui, we have all brands that ui has connected (i.e., b1, b2, …, bm that ui 

connects to in 𝐺0,1). The similarity score between ui and each non-connected brand bj is Sij: 𝑆𝑖𝑗 =

∑ 𝑆𝑘𝑗
𝑚
𝑘=1

𝑚
, where 𝑆𝑘𝑗  is the similarity between brand bj and brand bk that ui connects to in G0,1, m is 

the number of brands ui connects to in G0,1. 

The advantage of analyzing a homogeneous network is an increase in computational 

efficiency because the network size is dramatically reduced. However, such a simplified 

operation that converts an original heterogeneous user-brand network into an implicit 

homogeneous network usually results in decreased performance because some important 

information encoded in user-brand interactions is completely ignored. In contrast, our deep 

learning-based approach performs well because it jointly learns optimal representation for both 

brands and users while preserving latent relationships among brands and users. For the shallow 

model, we use the singular-value decomposition (SVD) method, which is the essential method in 

PCA to learn low-dimensional factors of the input data. Given a brand-user engagement matrix, 

we use SVD to decompose the user-brand interaction matrix M into a lower rank approximation: 

𝑀 = 𝑈Σ𝑉𝑇 , where U conceptually represents how much each user “likes” an underlying 

dimension, 𝑉𝑇conceptually represents how relevant each underlying dimension is to each brand, 

and Σ is a diagonal matrix of singular values, which are essentially weights. For the purpose of 

prediction, we first approximate the original matrix through U, Σ, and 𝑉𝑇and then predict a link to 

a brand with the highest predicted preferences that the user has not connected. 



Algorithm: LINK PREDICTION ALGORITHM 

Input: user-brand networks in training and testing; number of randomly selected users: N 

            k: precision@k, recall@k 

 Output: precision@k and recall@k 

1. Obtain node representation Vi via deep autoencoder for i in 1, …, m (m is the total 

number of users in training) 

2. Select N users at random U = {u1, u2, …, uN} 

3. S ⟵ Φ                                                      (initialization) 

4. foreach user ui ∈ U do 

    foreach brand bj in training do 

        pij ⟵ proximity score between ui and bj 

        S += (ui⟷bj, pij)  

    end 

end 

5. L = {l1, …, lk | li is a user-brand pair}           (top k predicted links based on their 

proximity scores) 

6. 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 =
|𝐿 ∩ 𝐸1,2 |

𝑘
, 𝑟𝑒𝑐𝑎𝑙𝑙@𝑘 =

|𝐿 ∩ 𝐸1,2 |

|𝐸1,2
𝑇 |

   (see the definition of  𝐸1,2  and 𝐸1,2
𝑇  in  

the Evaluation and Results Section) 
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Web Appendix: Identifying Market Structure: A Deep Network 

Representation Learning of Social Engagement  
 

 

 

WA1: Link Prediction Precision-recall Performance 

In this study, we aggregate user comments and likes as engagements and build a user-brand network. 

To evaluate the accuracy of learned brand and user network representations, we introduce a novel link 

prediction research design, where we predict the most likely formed links of user-brand engagement in an 

out-of-sample network given the brand representations and user representations learned from a training 

network. The experiment results are summarized in Table 4-6 in the main body of the paper. To facilitate 

a visual presentation of the results, we present the link prediction results in Figure WA1 and Figure WA2. 

We also demonstrate the impact of different scales of data size on the link prediction performance. Note 

that in our experiment, we compile a 2x2 research design with two different network structures 

(homogeneous vs. heterogeneous) and two different algorithms (linear model vs. deep model). We denote 

b2b as the homogeneous brand-brand network, and b2u as the heterogeneous brand-user network. 

Accordingly, four combinations are b2b-linear, b2b-deep, b2u-linear, and b2u-deep represent the method 

that uses linear network learning on the b2b network, deep network learning on the b2b network, linear 

network learning on the b2u network, and deep network learning on the b2u network, respectively. 
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Figure WA1: Link prediction performance, evaluated by Precision@K, and Recall@K. The X-axis 

denotes the value of K, indicating the top K selected user-brand links. The Y-axis denotes the precision 

and recall number 
 

  
Figure WA2: Link prediction performance, with different scales of training data. The X-axis denotes the 

percentage of training data used in building and training the user-brand network 
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WA2: Comment Network and Like Network 

On Facebook, users engage with brands in multiple ways, such as liking or commenting. In this study, we 

aggregate user comments and likes as engagements and build a user-brand network. However, it is also 

interesting to know what would happen if we construct a user-brand network with only comments or likes. 

Prior research shows that Facebook likes affect offline customer behavior (Mochon et al. 2017). To have 

a deeper understanding of learned network representation, we conduct two complimentary link-prediction 

experiments based on the comment network and the like network. The comment network is constructed 

between a user and a brand if the user leaves comments on the brand’s public page. Similarly, the like 

network is constructed between a user and a brand if the user likes posts on the brand’s public page.  

Similar to our previous experiments, we measure the link prediction performance on two metrics 

precision@k and recall@k. 

We can observe several findings from the results shown in Table WA1 and Table WA2. First, the 

network representations learned from the like network or the comment network have less predictive 

power than those learned from the network constructed using both likes and comments. For example, the 

precision@1000 of the comment network, the like network and the like+comment network is 0.168, 

0.314 and 0.355, respectively. Similarly, results for the recall metric show that the deep network learning 

is better at capturing the hidden relationships among brands and users with more volume and variety of 

data. Second, we see that deep network learning approach consistently performs better than linear models 

in the heterogeneous user-brand network setting, where the performance gain is limited in the 

homogeneous brand-brand network setting. This indicates that a common practice of reducing 

heterogeneous networks to homogeneous networks loses important information for learning good 

representation. Third, we can see that link prediction performance is better for the like network than the 

comment network. The reasons are two-fold: (1) the like network has more data than the comment 

network, which facilitates better network representation learning, and (2) the like engagement is more 
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meaningful than the comment engagement in the market structure discovery. A user liking a brand signals 

a preference for the brand, while a user commenting on a brand can be a complex signal as the comment 

may be positive or negative.  

Table WA1: Performance comparison for different models on the Like network. The number of 

randomly selected users is N=1,000 

precision@k  k=10 k=100 k=500 k=1,000 k=5,000 k=10,000 k=100,000 

Homogeneous 

brand-brand 

network 

Linear model 

0.320 0.279 0.258 0.233 0.127 0.067 0.011 

(0.094) (0.056) (0.008) (0.008) (0.004) (0.001) (0.001) 

Deep model 

0.323 0.284 0.258 0.235 0.135 0.069 0.011 

(0.147) (0.082) (0.017) (0.009) (0.014) (0.034) (0.002) 

Heterogeneous 

brand-user 

network 

Linear model 

0.424 0.365 0.312 0.287 0.152 0.087 0.011 

(0.035) (0.042) (0.039) (0.008) (0.032) (0.003) (0.000) 

Deep model 

0.486*** 0.398*** 0.354*** 0.314*** 0.178*** 0.091*** 0.011 

(0.026) (0.032) (0.023) (0.009) (0.037) (0.004) (0.001) 

recall@k  k=10 k=100 k=500 k=1,000 k=5,000 k=10,000 k=100,000 

Homogeneous 

brand-brand 

network 

Linear model 

0.002 0.024 0.111 0.201 0.458 0.563 0.896 

(0.001) (0.005) (0.003) (0.006) (0.015) (0.010) (0.006) 

Deep model 

0.002 0.025 0.124 0.204 0.476 0.560 0.882 

(0.002) (0.002) (0.011) (0.018) (0.052) (0.023) (0.034) 

Heterogeneous 

brand-user 

network 

Linear model 

0.041 0.056 0.332 0.350 0.521 0.635 0.911 

(0.003) (0.004) (0.029) (0.029) (0.075) (0.079) (0.009) 

Deep model 

0.049*** 0.068*** 0.350*** 0.404*** 0.562*** 0.663*** 0.929*** 

(0.005) (0.006) (0.021) (0.043) (0.037) (0.063) (0.028) 
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Table WA2: Performance comparison for different models on the Comment network. The number of 

randomly selected users is N=1,000 

precision@k  k=10 k=100 k=500 k=1,000 k=5,000 k=10,000 k=100,000 

Homogeneous 

brand-brand 

network 

Linear model 

0.189 0.179 0.156 0.134 0.067 0.045 0.010 

(0.169) (0.041) (0.014) (0.008) (0.005) (0.003) (0.000) 

Deep model 

0.189 0.168 0.162 0.137 0.062 0.044 0.010 

(0.097) (0.019) (0.052) (0.010) (0.032) (0.002) (0.001) 

Heterogeneous 

brand-user 

network 

Linear model 

0.213 0.192 0.167 0.154 0.122 0.080 0.010 

(0.025) (0.087) (0.029) (0.024) (0.052) (0.020) (0.001) 

Deep model 

0.234*** 0.210*** 0.173*** 0.168*** 0.126*** 0.088*** 0.011* 

(0.045) (0.023) (0.067) (0.019) (0.033) (0.002) (0.002) 

recall@k  k=10 k=100 k=500 k=1,000 k=5,000 k=10,000 k=100,000 

Homogeneous 

brand-brand 

network 

Linear model 

0.002 0.017 0.068 0.117 0.291 0.393 0.834 

(0.002) (0.003) (0.006) (0.008) (0.017) (0.018) (0.008) 

Deep model 

0.002 0.019 0.068 0.114 0.295 0.393 0.842 

(0.001) (0.012) (0.022) (0.032) (0.042) (0.053) (0.012) 

Heterogeneous 

brand-user 

network 

Linear model 

0.019 0.042 0.077 0.162 0.333 0.442 0.885 

(0.003) (0.019) (0.045) (0.029) (0.029) (0.056) (0.034) 

Deep model 

0.018 0.044** 0.082*** 0.182*** 0.352*** 0.453*** 0.894*** 

(0.004) (0.012) (0.051) (0.037) (0.026) (0.033) (0.046) 
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WA3: Category-level Visualization 

Additionally, since each brand in our Facebook data is associated with a category (provided by the 

brand), we can visualize how the 25 Facebook categories are related. We take a weighted average on 

learned vectors of all brands within each category to obtain a category vector. It can be considered as a 

“centroid” of all brands that belong to that category. More formally, given a category 𝐶 that includes a set 

of brands {𝑏1, 𝑏2, … , 𝑏𝑘}, where 𝒗𝒊 is the vector representation of each brand 𝑏𝑖, 𝑓𝑖 is the number of users 

who have engaged with 𝑏𝑖. Then, the category representation of 𝐶 is represented as: 𝒗𝑪 = ∑ log(𝑓𝑖) 𝒗𝑖
𝑘
𝑖=1 . 

Once we obtain vector representations for all 25 categories, we visualize them on a two-dimensional 

space using t-SNE, as shown in Figure WA3. We can see that “travel” is next to “airlines”, and not 

surprisingly, “alcohol” is close to “sporting-goods” and “gambling”. 

 

Figure WA3: Visualization of Facebook category structure.

 


