• Graduate Program
    • Why study Business Data Science?
    • Research Master
    • Admissions
    • Course Registration
    • Facilities
    • PhD Vacancies
  • Summer School
  • Research
  • News
  • Events
    • Events Calendar
    • Events archive
    • Tinbergen Institute Lectures
    • Summer School
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Foundations of Machine Learning with Applications in Python
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Tinbergen Institute Summer School Program
    • Annual Tinbergen Institute Conference archive
  • Alumni
  • Magazine
Home | People | Arturas Juodis
 placeholder

Arturas Juodis

Research

University
University of Amsterdam
Research field
Data Science and Econometrics
Interests
Panel Data

Biography

Arturas Juodis is an Associate Professor at the Amsterdam School of Economics with the focus on econometric theory of panel data models. His current research on econometrics of misspecified panel data models is financed by the NWO Veni grant. His research was published in the Journal of Econometrics, the Journal of Business and Economic Statistics, and the Econometrics Journal, among others.

Publications

Juodis, A. and Kučinskas, S. (2023). Quantifying noise in survey expectations Quantitative Economics, 14(2):609--650.

Juodis, A. and Sarafidis, V. (2022). An incidental parameters free inference approach for panels with common shocks Journal of Econometrics, 229(1):19--54.

Juodis, A. (2022). A regularization approach to common correlated effects estimation Journal of Applied Econometrics, 37(4):788--810.

Juodis, A. and Sarafidis, V. (2022). A Linear Estimator for Factor-Augmented Fixed-T Panels With Endogenous Regressors Journal of Business and Economic Statistics, 22(1):1--15.

Juodis, A. and Reese, S. (2022). The Incidental Parameters Problem in Testing for Remaining Cross-Section Correlation Journal of Business and Economic Statistics, 40(3):1191--1203.

Juodis, A., Karavias, Y. and Sarafidis, V. (2021). A homogeneous approach to testing for Granger non-causality in heterogeneous panels Empirical Economics, 60(1):93–112.

Juodis, A. and Poldermans, R. (2021). Backward mean transformation in unit root panel data models Economics Letters, 201:.

Juodis, A., Karabiyik, H. and Westerlund, J. (2021). On the robustness of the pooled CCE estimator Journal of Econometrics, 220(2):325--348.

Juodis, A. and Westerlund, J. (2019). Optimal panel unit root testing with covariates Econometrics Journal, 22(1):57--72.

Juodis, A. (2018). Rank based cointegration testing for dynamic panels with fixed T Empirical Economics, 55(2):349--389.

Juodis, A. and Sarafidis, V. (2018). Fixed T dynamic panel data estimators with multifactor errors Econometric Reviews, 37(8):893--929.

Juodis, A. (2018). First difference transformation in panel VAR models: Robustness, estimation, and inference Econometric Reviews, 37(6):650--693.

Juodis, A. (2018). Pseudo Panel Data Models With Cohort Interactive Effects Journal of Business and Economic Statistics, 36(1):47--61.

Bun, M., Carree, M. and Juodis, A. (2017). On Maximum Likelihood Estimation of Dynamic Panel Data Models Oxford Bulletin of Economics and Statistics, 79(4):463--494.

Juodis, A. (2013). A note on bias-corrected estimation in dynamic panel data models Economics Letters, 118(3):435--438.