• Graduate Program
    • Why study Business Data Science?
    • Research Master
    • Admissions
    • Course Registration
    • Facilities
  • Summer School
  • Research
  • News
  • Events
    • Events Calendar
    • Events archive
    • Tinbergen Institute Lectures
    • Summer School
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Foundations of Machine Learning with Applications in Python
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Tinbergen Institute Summer School Program
    • Annual Tinbergen Institute Conference archive
  • Alumni
  • Magazine

Huurman, C., Ravazzolo, F. and Zhou, C. (2012). The power of weather Computational Statistics and Data Analysis, 56(11):3793--3807.


  • Affiliated authors
    Francesco Ravazzolo, Chen Zhou
  • Publication year
    2012
  • Journal
    Computational Statistics and Data Analysis

Weather information demonstrates predictive power in forecasting electricity prices in day-ahead markets in real time. In particular, next-day weather forecasts improve the forecast accuracy of Scandinavian day-ahead electricity prices in terms of point and density forecasts. This suggests that weather forecasts can price the weather premium on electricity prices. By augmenting with weather forecasts, GARCH-type time-varying volatility models statistically outperform specifications which ignore this information in density forecasting.