Confidence set for group membership
-
SeriesSeminars Econometric Institute
-
SpeakersAndreas Dzemski (Gothenburg University, Denmark)
-
FieldEconometrics
-
LocationErasmus University, Polak Building, Room 1-17
Rotterdam -
Date and time
May 09, 2019
16:00 - 17:00
Abstract:
We develop new procedures to quantify the statistical uncertainty of
data-driven clustering algorithms. In our panel setting, each unit belongs to
one of a finite number of latent groups with group-specific regression curves.
We propose methods for computing unit-wise and joint confidence sets for group
membership. The unit-wise sets give possible group memberships for a given unit
and the joint sets give possible vectors of group memberships for all units. We
also propose an algorithm that can improve the power of our procedures by
detecting units that are easy to classify. The confidence sets invert a test
for group membership that is based on a characterization of the true group
memberships by a system of moment inequalities. To construct the joint confidence,
we solve a high-dimensional testing problem that tests group membership
simultaneously for all units. We justify this procedure under N,T→∞ asymptotics where we allow T to be much smaller than N . As part of our
theoretical arguments, we develop new simultaneous anti-concentration
inequalities for the MAX and the QLR statistics. Monte Carlo results indicate
that our confidence sets have adequate coverage and are informative. We
illustrate the practical relevance of our confidence sets in two applications.