Inference on common trends in functional time series
-
Series
-
SpeakersMorten Nielsen (Aarhus University, Denmark)
-
FieldEconometrics
-
LocationUniversity of Amsterdam, Room E5.22
Amsterdam -
Date and time
February 23, 2024
12:30 - 13:30
Abstract
This paper studies statistical inference on unit roots and cointegration for time series in a Hilbert space. We develop statistical inference on the number of common stochastic trends that are embedded in the time series, i.e., the dimension of the nonstationary subspace. We also consider hypotheses on the nonstationary subspace itself. The Hilbert space can be of an arbitrarily large dimension, and our methods remain asymptotically valid even when the time series of interest takes values in a subspace of possibly unknown dimension. This has wide applicability in practice; for example, to the case of cointegrated vector time series that are either high-dimensional or of finite dimension, to high-dimensional factor model that includes a finite number of nonstationary factors, to cointegrated curve-valued (or function-valued) time series, and to nonstationary dynamic functional factor models. We include two empirical illustrations to the term structure of interest rates and labor market indices, respectively.
Link to paper.