Correa, J., Cristi, A., Feuilloley, L., Oosterwijk, T. and Tsigonias-Dimitriadis, A. (2025). The Secretary Problem with Independent Sampling Management Science, :.
Maragno, D., Wiberg, H., Bertsimas, D., Birbil, S., den Hertog, D. and Fajemisin, A. (2025). Mixed-Integer Optimization with Constraint Learning Operations Research, :.
Karaca, U., Birbil, S.Ilker, Yildirim, S., Aydin, N. and Mullaoglu, G. (2022). Differential Privacy in Multi-Party Resource Sharing Operations Research, :.
Peng, Y., Fu, MichaelC., Heidergott, B. and Lam, H. (2020). Maximum likelihood estimation by monte carlo simulation: Toward data-driven stochastic modeling Operations Research, 68(6):1896--1912.
Berkhout, J. and Heidergott, BerndF. (2019). Analysis of Markov influence graphs Operations Research, 67(3):892--904.
Peng, Y., Fu, MichaelC., Hu, J.Q. and Heidergott, B. (2018). A new unbiased stochastic derivative estimator for discontinuous sample performances with structural parameters Operations Research, 66(2):487--499.
Hoogeboom, M., Battarra, M., Erdoǧan, G. and Vigo, D. (2016). Erratum: Exact Algorithms for the Clustered Vehicle Routing Problem (Operations Research (2014) 62:1 (58-71)) Operations Research, 64(2):456--457.
Battarra, M., Erdogan, G. and Vigo, D. (2014). Exact Algorithms for the Clustered Vehicle Routing Problem Operations Research, 62(1):58--71.
Heidergott, B., Hordijk, A. and Leder, N. (2010). An approximation approach for the deviation matrix of continuous-time Markov processes with application to Markov decision theory Operations Research, 58:918--932.
Heidergott, B., Hordijk, A. and Leder, N. (2010). Series expansions for continuous-time Markov chains Operations Research, 58:756--767.