• Graduate Program
    • Why study Business Data Science?
    • Research Master
    • Admissions
    • Course Registration
    • Facilities
  • Research
  • News
  • Events
  • Alumni
  • Magazine

Blasques, F., Ji, J. and Lucas, A. (2016). Semiparametric score driven volatility models Computational Statistics and Data Analysis, 100(August):58--69.


  • Journal
    Computational Statistics and Data Analysis

A new semiparametric observation-driven volatility model is proposed. In contrast to the standard semiparametric generalized autoregressive conditional heteroskedasticity (GARCH) model, the form of the error density has a direct influence on both the semiparametric likelihood and the volatility dynamics. The estimator is shown to consistently estimate the conditional pseudo true parameters of the model. Simulation-based evidence and an empirical application to stock return data confirm that the new statistical model realizes substantial improvements compared to GARCH type models and quasi-maximum likelihood estimation if errors are fat-tailed and possibly skewed.