• Graduate Program
    • Why study Business Data Science?
    • Research Master
    • Admissions
    • Course Registration
    • Facilities
  • Summer School
  • Research
  • News
  • Events
    • Events Calendar
    • Events archive
    • Tinbergen Institute Lectures
    • Summer School
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Foundations of Machine Learning with Applications in Python
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Tinbergen Institute Summer School Program
    • Annual Tinbergen Institute Conference archive
  • Alumni
  • Magazine
Home | People | Julia Schaumburg
 placeholder

Julia Schaumburg

Research

University
Vrije Universiteit Amsterdam
Research field
Data Science and Econometrics
Interests
Applied Econometrics, Econometrics

Publications

João, I.C., Schaumburg, J., Lucas, A. and Schwaab, B. (2024). Dynamic Nonparametric Clustering of Multivariate Panel Data Journal of Financial Econometrics, 22(2):335--374.

Gorgi, P., Koopman, S.J. and Schaumburg, J. (2024). Vector autoregressions with dynamic factor coefficients and conditionally heteroskedastic errors Journal of Econometrics, :.

Custodio João, I., Lucas, A., Schaumburg, J. and Schwaab, B. (2023). Dynamic clustering of multivariate panel data Journal of Econometrics, 237(2, Part B):1--18.

Böhm, H., Schaumburg, J. and Tonzer, L. (2022). Financial Linkages and Sectoral Business Cycle Synchronization: Evidence from Europe IMF Economic Review, 70(4):698--734.

Lucas, A., Schaumburg, J. and Schwaab, B. (2019). Bank Business Models at Zero Interest Rates Journal of Business and Economic Statistics, 37(3):542--555.

Nucera, F., Lucas, A., Schaumburg, J. and Schwaab, B. (2017). Do negative interest rates make banks less safe? Economics Letters, 159:112--115.

Lucas, A., Opschoor, A. and Schaumburg, J. (2016). Accounting for Missing Values in Score-Driven Time-Varying Parameter Models Economics Letters, 148:96--98.

Blasques, F., Koopman, S., Lucas, A. and Schaumburg, J. (2016). Spillover dynamics for systemic risk measurement using spatial financial time series models Journal of Econometrics, 195(2):211--223.

Bormann, C., Schaumburg, J. and Schienle, M. (2016). Beyond Dimension two: A Test for Higher-Order Tail Risk Journal of Financial Econometrics, 14(3):442--480.

Hautsch, N., Schaumburg, J. and Schienle, M. (2015). Financial Network Systemic Risk Contributions Review of Finance, 19(2):685--738.

Hautsch, N., Schaumburg, J. and Schienle, M. (2014). Forecasting systemic impact in financial networks International Journal of Forecasting, 30(3):781--794.

Schaumburg, J. (2012). Predicting extreme Value at Risk: Nonparametric quantile regression with refinements from extreme value theory Computational Statistics and Data Analysis, 56(12):4081--4096.