• Graduate Program
    • Why study Business Data Science?
    • Research Master
    • Admissions
    • Course Registration
    • Facilities
  • Summer School
  • Research
  • News
  • Events
    • Events Calendar
    • Events archive
    • Tinbergen Institute Lectures
    • Summer School
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Foundations of Machine Learning with Applications in Python
      • Machine Learning for Business
      • Tinbergen Institute Summer School Program
    • Annual Tinbergen Institute Conference archive
  • Alumni
  • Magazine

Schaumburg, J. (2012). Predicting extreme Value at Risk: Nonparametric quantile regression with refinements from extreme value theory Computational Statistics and Data Analysis, 56(12):4081--4096.


  • Journal
    Computational Statistics and Data Analysis

A framework is introduced allowing us to apply nonparametric quantile regression to Value at Risk (VaR) prediction at any probability level of interest. A monotonized double kernel local linear estimator is used to estimate moderate (1%) conditional quantiles of index return distributions. For extreme (0.1%) quantiles, nonparametric quantile regression is combined with extreme value theory. The abilities of the proposed estimators to capture market risk are investigated in a VaR prediction study with empirical and simulated data. Possibly due to its flexibility, the out-of-sample forecasting performance of the new model turns out to be superior to competing models. {\textcopyright} 2012 Elsevier B.V. All rights reserved.